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Abstract

New computerized systems are constantly being deployed to solve many of

our problems at the expense of increased complexity for the IT professionals

who manage them. The field of Autonomic Computing has been defined

to address this complexity by encouraging engineering of self-managing sys-

tems. This thesis contributes a prototype system for making qualitative and

quantitative classifications of a webserver’s real-time workload. The system

includes an extensible sentinel autonomic element and an intelligence layer

in the form of an aggregator autonomic element. The sentinel element has

been architected to instrument system readings through the use of Solaris

DTrace and preprocess into a real-time datastream. The aggregator element

uses neuro-fuzzy networks to perform the real-time classification. The inves-

tigative procedure for the construction of the prototype system, including

the adaptation of methods for this particular task and training procedure

with validation, results from the development of the aggregator models is

presented.
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1 Introduction

1.1 Complexity of Software Systems

In our modern society, new technologies are being applied to help us with our

problems at an unprecedented rate. Tasks which once took large amounts of ef-

fort and time and were prone to errors can now be done quickly and efficiently by

computerized systems. An unforeseen consequence of this pattern is the increased

computerization of society leading to new problems of complexity. Issues such as

reliability, maintenance, security, configuration and reconfiguration are a massive

cost and an ongoing problem for engineers and technicians of these complex com-

puterized systems. The next frontier of progress is to discover ways to reduce the

cost and impact of dealing with these issues. One such example is the definition of

the term ‘Autonomic Computing.’

On this new frontier, a personal opinion of the author that momentum gathering

has progressed very slowly. Problems are simple to identify, but massively difficulty

to address. The necessary tasks are complex problems which are currently handled

by highly trained knowledge workers. These are processes of higher intelligence

which have historically known to be difficult to translate into computer actions.

Furthermore, nearly all software and system design up until this point has been

done with the assumption that a human will be present to troubleshoot and tweak.
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The instrumentation facilities used as a basis for troubleshooting are built to be

human-readable and rely on human intuition and observational skills for diagnosis.

This is an unfortunate reality which has made the systems of today hostile towards

such computerized examination. Until this barrier can be overcome, progress in the

field will continue to move slowly.

1.2 Motivation

At the time of the beginning of this research, a new operating system monitoring

tool, DTrace, became available for public use. DTrace marks a turning point where

operating systems have become sufficiently sophisticated that to increase the at-

tractiveness of a platform, focus has shifted to building in qualities of openness and

observability. Instead of having the system architects as gatekeepers to the moni-

toring information available (naturally catering to a human administrator), nearly

all conceivable information is available for the administrator (human or otherwise)

to obtain.

This was viewed as an opportunity for a new approach at getting at the inner-

workings of an operating system from the perspective of a software agent. DTrace

was seen as having massive amount of potential for providing a strong machine-

readable basis for making judgments analogous to higher-intelligence that human

administrators posses. This strategy is realized in this research in the form of a
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framework which aggregates the DTrace data in a useful manner and the applica-

tion of a machine learning technique to extract and apply knowledge. The system

constructed serves as a prototype for an agent capable of making judgments about

its own state in a self-aware fashion, which is a basis for the desired self-managing

systems of the future.

1.3 Goal and Approach

From the outlook at the beginning of this research, there was the hope that the new

advent of DTrace could have something significant to offer the domain of Autonomic

Computing. The goal of this work was to find an application and to demonstrate its

potential. Both these elements, DTrace and Autonomic Computing, are extremely

young and have not had the chance be studied in combination by the academic

community . As a result, this work has the chance to pioneer a venture into new

technologies.

Two major components are needed to realize the intelligence layer. First, a machine

learning technique to convert data into applicable knowledge, neuro-fuzzy networks

in this case. Second, the component which can aggregate and process DTrace data

into a form that can be interpreted by the machine learning technique which, for

this work, is the Sysmonkey Open-Architected Sentinel Element (SOASE).

The approach of this research is first to construct the base component, SOASE,
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which will provide a stream of data which can be obtained from a running com-

puter system. Second, the implementation of the neural-fuzzy networks to extract

knowledge from the data is constructed. To address the goal of creating a system

with autonomic elements, these parts need to be assembled and shown to be work-

able in the context of a realistic computing system. The context used for this work

is the SPECweb2005 benchmark which is representative of the computerized task

of serving web pages. By designing a set of experiments using these parameters

to demonstrate a system which can provide useful knowledge to a decision making

agent would be a fulfillment of the goal.

1.4 Contribution

To the knowledges of the author, this research attempts a problem which has not

been examined before. Therefore, the first contribution of this work is the exper-

imental setup which has been developed. The combination of elements, namely

DTrace, Autonomic Computing and the SPECweb2005 benchmarks have a defined

a problem domain and a set of criteria for being successful in it. The engineering

that when into the open architecture of SOASE was carefully chosen considering

the possibility for it to be extended and adapted as part of future work, in light of

knowledge of this initial attempt.

The second and third contribution of this work is the construction and validation of
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two autonomic elements. The first being SOASE, the sentinel autonomic element,

which monitors the system. The second being an aggregator element which takes

the monitoring data and extracts meaning from it. The work that went into these

two elements required specific consideration of and adaptation to fit a real-time

environment. The working prototype system of these two elements working in con-

junction can be presented as a contribution for consideration in future engineering

of autonomic systems.

1.5 Thesis Overview

The body of this document begins in Section 2 by providing some necessary back-

ground knowledge for the starting elements of this work. First, the context of

Autonomic Computing is set for this work. Second, the utilized elements of DTrace,

Neuro-Fuzzy Modeling and the SPECweb2005 benchmark are discussed.

Section 3 discusses past previous work done in a similar area to what is investigated

in this thesis. The nature of this present thesis work is not an evolutionary pro-

gression of existing work, but rather a venture into a new problem. The effect is

that there is relatively little pre-existing work that can be directly compared. What

is overviewed in the section is other pre-existing work that this research shares

overlapping concerns and inspiration with.

Section 4 defines the scope of this particular research and the procedure that it
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follows.

Section 5 discusses the work that was done to construct the apparatus necessary for

facilitating the investigations presented later on. This includes the hardware and

pre-packaged software setup for the test system, the monitoring framework that was

constructed to instrument the system (SOASE) and the adaptation of a neuro-fuzzy

learning technique.

Section 6 discusses the approach of three investigations into the construction of

three components of the aggregator element. This section sets down the purpose

and design of the procedure for the training of these components which proceeds in

the next section.

Section 7 presents the development and validation of the three aggregator element

components as was planned in the previous section. It presents aggregated and visu-

alized data which pertains to the aptitude of the system that has been constructed

for this research.

Finally, Section 8 wraps up this research by recapping the results and discussing the

perceived level of success and knowledge gained. Also, shortcomings of this work

and potential future endeavors into related work are discussed.
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2 Background

2.1 Autonomic Computing

The manpower cost of maintaining and setting up IT infrastructure in businesses

continues to grow as computer systems become increasingly complex and networks

increase in size. In order to help deal with these rising costs, IBM introduced the

term “Autonomic Computing” in 2001 [34]. The word ‘autonomic’ is borrowed from

biology to describe the automated regulation and adjustment of processes within

organisms, such as heart rates speeding up during increased physical activity and

the immune system which organizes to fight harmful elements. The vision is to

design similar behavior into the computerized systems of the future.

For the inventions that are being made in the present and near future, the engineer-

ing mindset needs to be shifted from the expectation of constant human supervision

towards a paradigm of designing self-managing systems.

Autonomic Computing has four areas of focus [14]:

• Self-configuration - The ability of new components to integrate themselves into

existing infrastructure guided by the surrounding system which is detected.

• Self-healing - The diagnosis of failures and/or deficiencies of internal compo-

nents and automated repair or compensation when possible.
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• Self-optimization - The diagnosis of performance or procedural bottlenecks and

the automated adjustment of tunable parameters to increase efficiency.

• Self-protection - The detection of intrusions or vulnerabilities that threaten a

systems security and the ability to take steps to avoid or mitigate them.

Despite this being a new field of research in the official sense, some elements of

Autonomic Computing exist in implementation already. Out of necessity, Internet

routing protocols developed a self-healing element to deal with the unreliability of

individual nodes. This is a well-cited example of a self-healing system. In the per-

sonal computing domain, there has been an unpleasant history of manual hardware

configuration to get peripherals to work. In more recent times, this difficulty has

been greatly reduced by hot-pluggable USB devices which provide their own drivers

and interfaces which the user does not need to be concerned with. This is an ex-

cellent example of the benefits of a self-configuring piece of hardware. Autonomic

Computing wishes to borrow the essence of some of these specific technologies and

apply it to more mainstream technological problems. This is no easy task. In the

two mentioned examples, the ease of use that we enjoy today was the result of an

evolutionary process that arose over several revisions of similar technology. Earlier

schemes had flaws that stood in the way of the advancement and usefulness of the

technology that were fixed over time. A hope of Autonomic Computing is to recog-

nize the trend and respond pro-actively with our approach to engineering. Ideally,
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from the end-user perspective, an autonomic system should implement “computing

that just works” [2].

Now that the concept has been formalized, focus is on replicating the processes

that knowledge workers, notably system administrators, apply to manage these

systems. Legacy systems are examined and re-imagined with these aspects applied

and architectural frameworks are developed to reduce need for human intervention

[13] [31]. The economic incentive is that companies will want to e-source costly

human effort from IT departments into autonomic actions done by the systems

themselves. In one example, Apache, the dominant web server application, can be

abstracted to not focus on tunable parameters, but tuned to the desired amount of

system resources to consume [5]. This is useful by reducing the human intervention

needed to allow the webserver to maintain reasonable performance. The procedural

knowledge the administrator exhibits can be recorded by observation. Techniques

of knowledge representation from the field of Machine Learning can then be used to

understand and perhaps synthesize human configuration and management actions

[16].

2.2 DTrace

In January of 2005, Sun Microsystems released the latest version of its operating

system, Solaris 10. This release included the Dynamic Tracing Framework, com-

9



monly referred to as DTrace [35]. This tool is highly regarded in the industry, as

it is unprecedented and unique in the benefits it can provide. It won the Wall

Street Journal’s 2006 Technology Innovation Award [37] in the software category

and John Siracusa of Ars Technica referred to it as “indistinguishable from magic”

in his in-depth review of its port to Mac OS X 10.5 Leopard [28].

Using DTrace, an administrator can step in and view the internals of a running

kernel in real-time. By flagging probes of interest, the administrator can collect

statistics and develop views of how the operating system is interacting internally,

with the hardware and with the running application.

The use of DTrace is analogous of how a programmer would use a debugger to insert

breakpoints into his/her code to glimpse inside the program as the execution steps

over those instructions. This is luxury that requires a special compilation of the code

and to run it under only specially controlled test conditions. DTrace’s technology

allows this kind of observation to be made on a normally compiled program running

in a production environment, notably the Solaris kernel. DTrace is designed in such

a way that it has zero impact to system stability and near-zero impact on system

performance. This is revolutionary because it allows observations to be made in

real-world environment where kernel, hardware and applications interact. In the

past, it was prohibitively awkward to get at such information where a special test-

bed setup, possibly requiring a recompilation of the code and special apparatus was
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needed. DTrace allows the administrator to bypass the difficult steps and conduct

an investigation on a live system in a real-world deployment [4].

The basic principal that DTrace works upon is the concept of a ‘probe.’ A probe

is a location in the kernel code’s execution which can be flagged to be active. As

the code executes and steps over a flagged probe, DTrace is notified and is given

the opportunity to access some direct info about the system state from the specific

context of the exact moment the probe is stepped over. Along with the ability to

record values when the probes fire, DTrace has the ability to aggregate and track

statistics which can be derived from the firing of probes. This is done through

the scripting language named ‘D’. By crafting a short script, the administrator can

make a report on any possible kernel function that he or she wishes instead of being

limited to the baked-in monitoring tools which came with the operating system

distribution. This flexibility allows a troubleshooter to drill down to exceptional

granularity in a particular problem area.

Figure 1 is an example of a D script. The function of this script is to print the

amount of bytes and packets sent and received every second. This is accomplished

by invoking probes in the internals of Solaris 10’s networking stack in a function

involved in the handling of TCP connections. When the kernel function is called as

the result of an application or otherwise, the probe will fire and pieces of the script

will be executed.
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pragma D option quiet

dtrace:::BEGIN

{

 write_packets=0;

 write_bytes=0;

 read_packets=0;

 read_bytes=0;

}

tick-1sec

{

 printf("%i %i %i %i\n",read_packets,read_bytes,write_packets,write_bytes);

 write_packets=0;

 write_bytes=0;

 read_packets=0;

 read_bytes=0;

}

fbt:ip:tcp_send_data:entry

{

 write_bytes += msgdsize(args[2]) + 14;

 write_packets += 1;

}

fbt:ip:tcp_rput_data:entry

{

 read_bytes += msgdsize(args[1]) + 14;

 read_packets += 1;

}

Figure 1: DTrace Example Script

In the example, when the network stack is called upon to send a piece of data

to another machine over the network, the tcp send data:entry probe will fire. This

probe corresponds to the tcp send data function of the source code file tcp.c which is

a component of the Solaris 10 source tree1. The third argument of the tcp send data

function as it was called at the time of the specific firing of the probe can be accessed

by the D script by referencing args[2]. The argument is a struct type which contains

the data to be passed by the packet. The msgdsize method is provided by the D

1Source code available under the CDDL and can be downloaded or viewed at http:

//www.opensolaris.org
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language to count the size of the message in bytes. This script records the amount of

bytes contained in the packet (adding 14 to account for the packet header) and also

increments a counter to represent the number of packets that have been sent. The

same calculation is done for incoming packets received with the tcp rput data:entry

probe. The tick-1sec probe is provided by DTrace which will fire every second, on

the second as determined by the system clock. This script simply displays the values

counted and resets the counter. When run, this script will print the amount of bytes

and packets sent and received every second.

This is a simple example to illustrate some basic functionality. There are many

thousands of probes defined in Solaris. With proper knowledge of the internals of

the kernel, much more elaborate and specialized scripts could be constructed to

address a particular need. For the purposes of the implementations described in

this research, this is an adequate level of understanding. The scripts that have

been written are are a similar level of complexity. However, it should be noted

that DTrace has many more features and capabilities beyond what is discussed here

[35]. An excellent example of the full abilities available through DTrace is Brendan

Gregg’s extremely robust DTrace Toolkit [9].
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2.3 Fuzzy Modeling

2.3.1 Fuzzy Neural Networks

The preferred method of machine learning used in this research is that of Fuzzy

Neural Networks (FNN), also referred to as Neuro-Fuzzy Networks. This is a special

type of Artificial Neural Network that incorporates the element of fuzzy logic into

its structure [21] [22] [19] [24].
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Figure 2: Basic Artificial Neural Network

A basic Artificial Neural Network (ANN), as illustrated in Figure 2, consists of a

layer of input nodes, potentially multiple layers of hidden nodes and a layer of output

nodes. Each layer of nodes will take inputs from the previous layer, combine them

with weights of the synapses and calculate outputs via the node’s transfer function.
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Training the network is the process of adjusting the weights of the network to match

the correct set of outputs to the input fed into the network. The method for doing

this is referred to as backpropagation training. Weights are adjusted to minimize

the error in the output proportional to how much the weight contributed to the

error. Over many iterations of this process, the knowledge of patterns in the data

can be trained into the structure of the network.

A FNN is a special case of a ANN. The nodes are of a special type referred to

as fuzzy neurons [11]. All inputs, weights and outputs are fuzzy numbers and the

transfer functions are T-Norms and S-Norms. A FNN is also limited to a single

hidden layer between the input and the output. The motive for this design is that

the network gains the ability to break down to a linguistic representation in the

form of a set of fuzzy if-then rules. The transfer function at a hidden layer node is

a S-norm which is a representation of the linguistic OR and the transfer function

at a output layer node is a T-Norm and is a representation of the linguistic AND.

This is illustrated in Figure 3.

Examining a fully trained normal artificial neural network can be daunting since the

transfer functions can be difficult to impossible to articulate linguistically and the

weights of the network take advantage of the entire range of real numbers. With

a potential drawback of losing prediction accuracy, the network can become more

interpretable by restricting it to linguistically representable elements [22]. FNNs do
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Figure 3: Fuzzy Neural Network with AND and OR transfer functions

this by using AND and OR operations which have both mathematical and linguistic

meanings associated. Also, fuzzy set membership values have linguistic labels such

as ‘large,’ ‘medium,’ and ‘small’ which linguistically represent indications of quantity

in a similar dualistic fashion [7].

2.3.2 FNN Training

2.3.2.1 Overview The learning technique utilized in this work has a unique

method of training FNNs. It was adapted from the evolutionary fuzzy modeling

method developed by Pedrycz and Reformat [22]. This method defines three phases

to the training process. First, a phase of generating a collection of discrete fuzzy sets
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from crisp values to serve as baseline building blocks for the later phases to utilize.

Second, an evolutionary phase of genetic programming (GP) is used to develop the

the structure of the network. The third and final phase is to apply parametric

refinement to better train the best result from the GP phase.

The second and third phases are what is relevant to this work. For simplicity of

discussion, all reference to these phases will be renumbered the first and second

phase, respectively. The ignored first phase is defined for completeness in this back-

ground, but is not necessary for later explanation of concepts. The operation which

it performs is done manually and described in detail on its own in Section 5.4.3.

The GP and Backpropagation Training phases are described in some detail here.

2.3.2.2 Phase 1 - Genetic Programming The goal of this phase of the model

development is to find the structure of a FNN which is the best fit as a model. The

individual is a tree of operations and terminal nodes which represent a FNN. It is

limited in size and depth to include the AND layer, the OR layer and the input

layer. This phase is not concerned with the weights of the connections between

the nodes on the FNN, only the parameter controlling the connection’s existence

or non-existence is modified. The crossovers and mutations occur on this tree to

re-arrange the structure of the network. The fitness of a particular individual is

determined by how well the output matches the desired output of the training data

set. Another property of this GP scheme is that inputs are pruned down to a
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minimal set necessary. The connections that exist and are going into an OR node

are regarded as having a weight of 1.0 for the evaluation and connections that do

not exist are regarded as having a weight of 0.0 (A ∨ 0.0 = A). This is reversed for

the connections going into an AND node to be consistent with the exist/does not

exist metaphor (A ∧ 1.0 = A). All inputs are not necessary to be taken advantage

of in the prediction and the solutions that emerge only take into account the subset

of inputs that prove useful [27]. This GP process is run for as many generations as

is judged to be necessary to produce a suitable individual to advance and receive

training in the next phase.

2.3.2.3 Phase 2 - Backpropagation Training Once an individual is selected

from the GP phase, backpropagation training is applied to make the individual

better fit the training dataset. Starting out, the weights of the network are set to

either 1.0 or 0.0 depending on whether the connection exists or not. A better solution

for the dataset most likely can be found by adjusting these extreme weights (0.0 or

1.0) to something intermediate in that domain. Adjustments are made according to

the rules of backpropagation training. Each data point is run through the network

for each iteration. For each point, the obtained output for the model is compared to

the correct output at each of the output nodes. Then, traveling backwards through

the network, the weights are adjusted proportional to first, the error of the result

and second, how much the particular weight contributed to the result out of many in
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the same layer. The property of this training is that when many points are applied

over many iterations, the network will converge to a equilibrium that reduces the

total error in prediction across the training data set.

2.4 SPECweb2005 Benchmark

2.4.1 Overview

SPECweb2005 is the industry standard for evaluation of the performance of web

servers. It was developed by the non-profit Standard Performance Evaluation Cor-

poration among a suite of other benchmarks that measure system performance under

a variety of criteria. Hardware manufactures can use this particular benchmark to

compare and quantify the benefits of their offerings with those of other vendors based

on how many simultaneous clients the system can support in a realistic web-serving

environment. The benchmark is also, to a lesser extent, useful to operating system

and web server software vendors who are enabled to compare how their products

perform on a baseline set of hardware.

The scoring for this benchmark is handled analogous, to some extent, with com-

petitive weightlifting. The benchmark will not automatically find the maximum

effective level of workload that can be handled as would be generally expected of a

benchmark. Rather, prior to running the benchmark, the benchmark administrator

must challenge the system to handle a benchmark workload. The SPECweb2005 will
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run the benchmark at that setting and report back to the administrator whether or

not the system met the standard of performance to pass the test. The benchmark

administrator must keep raising the challenge until the upper limit of where the

system can pass the test is reached.

This scheme is necessary for reasonable technical limitations. More commonly,

benchmarks set up a certain amount of work for the system to perform and the

score is based upon the time that it takes to complete the task or some other similar

variation of the concept. Because of the client-server nature of the system where

there is no simple contained workload, this particular benchmark model cannot be

applied. Another imaginable benchmark scheme where the client would ramp up

to a level where the performance can be maintained is also not feasible. This is

because server performance in this application relies heavily on caching of often ac-

cessed content. To perform well, the server’s caches needs time to saturate to an

equilibrium to best meet the load. Therefore, the load must be stable for a period

of time in order to get the maximum performance value. The scheme implemented

for this benchmark is to accommodate this, but has the tradeoff of being quite

time-consuming to run for each trial.

The SPECweb2005 package includes three different workloads to test the behav-

ior of the system under loads of different characteristics. They are referred to as

SPECweb Banking, SPECweb Ecommerce and SPECweb Support. Here, they will
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be referred to more casually as Banking, Ecommerce and Support loads. The overall

score of the system for the SPECweb2005 benchmark comes from a combination of

the scores on the three workloads. The scores are combined as follows:

SPECweb2005score = 3

√√√√
(

Bankscore

Bankref

) (
Ecomscore

Ecomref

) (
Suppscore

Suppref

)
· 100 (1)

Bankscore, Ecomscore and Suppscore are the scores for the individual benchmarks.

Bankref , Ecomref and Suppref are the scores of a reference system the benchmark

administrator wishes to compare against. If there is no reference system and the

benchmark administrator would just like a standardized raw score, a value of 100

should be used for each of the reference terms.

2.4.2 Workloads

In this section, there are brief descriptions of the three workloads available in the

benchmark suite. The full design documentation and breakdown of the specifics are

open to the public and available online for more in-depth detail, but they are briefly

summarized here to include the relevant knowledge for this research [36]. Included

in this discussion is the expected bottleneck that will limit the server’s performance.

The bottlenecks encountered may, in practice, be different depending on the specific

hardware setup, but the description here reflect generalities that apply to most cases

including all cases encountered in this research.
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2.4.2.1 Banking Load The Banking load uses exclusively SSL connections for

its traffic. The workload was modeled off of what was observed in the logs of

a real-world Banking application where approximately 95% of the requests were

HTTP GET requests and approximately 5% of the requests were HTTP POST.

The intended bottlenecked resource is the CPU as it gets bogged down with the

SSL encryption of traffic under a heavy load.

2.4.2.2 Ecommerce Load The Ecommerce load is designed to simulate a web

application that allows client users to view, configure and purchase computer sys-

tems. It is modeled after statistics on average page size, image sizes and user

behavior found on real Ecommerce sites. The webserver generates dynamic content

and also serves out product information stored on the server’s hard drive. The in-

tended bottleneck on the system is the capacity of the system memory. The content

being accessed is of great variety and the performance depends on how efficiently

the content can be cached in RAM for quick access.

2.4.2.3 Support Load The Support load is modeled after a vendor’s support

website. The simulated users browse for a particular product and download a related

file. This load was also developed from looking at real-world log files of major

computer vendor’s support sites. The expected stress on the benchmark system is

the network and disk throughput as large files are read from the hard drive and sent
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over the network. These files are much bigger than is the case for the Ecommerce

content, so their ability to be cached is limited.

2.4.3 Hardware Requirement

To run the SPECweb2005 benchmark, a minimum of three computer systems on a

network are needed. The first is the System Under Test (SUT), which is the machine

which is being scored by this benchmark on its ability to serve web clients. The

second is the Backend Simulator (BeSim), which simulates a database backend for

the SUT. Finally, at least one system must act as the client which generates requests

to the server and collects statistics on how well the server responds to them. There

are also options for software setup on the systems to provide flexibility. The specifics

of how the hardware was set up for this work is detailed in Section 5.2.2.

2.4.4 Software Configurables

There are many configurable options which the benchmark administrator can adjust.

In order to have a benchmark run meet the standards to get it recognized by SPEC,

there are ranges of valid configurations. The default values are adequate for a valid

benchmark run. There are many more configurables than are discussed here. Only

the major ones that are relevant to the research work done are listed below:

23



2.4.4.1 SIMULTANIOUS SESSIONS The load that the benchmark is going

to test the webserver’s ability to handle. If the server passes the test, this value is

the score that can be claimed as its score. This has to be manually adjusted to

the maximum level that the system can handle as was described in Section 2.4.1.

The range of the adjustments will vary greatly depending on amount of resources

available in the hardware setup. By design of the benchmark, a ‘client session’ is

roughly equivalent, but does not directly correspond to the activities a real-world

human. The unit of a single session represents a unit of client workload which

is agreed to be equivalent across the three workloads. Real-world client sessions

controlled by a human tend to vary greatly in their activity over time, so a direct

correspondence is not reasonable in a simulation. A session is a basic unit which

formulates the final score of a system on a benchmark. The neutrality and balance of

this unit, which is provided by SPEC, is essential to not bias the final score towards

systems that are more adept in one workload over another in the score calculation.

2.4.4.2 THREAD RAMPUP SECONDS This is the amount of time that

the benchmark spends ramping up the load before reaching the

SIMULTANIOUS SESSIONS level. The default value is 180 seconds, or 3 minutes.

2.4.4.3 WARMUP SECONDS This is the period that the benchmark runs

at full client load before the measurements begin. The default value is 300 seconds,
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or 5 minutes.

2.4.4.4 RUN SECONDS This is the period over which the benchmark mea-

sures the request response times of the server. This period has to be sufficiently

long to gather statistically significant values of the servers ability. The default value

is 1800 seconds, or 30 minutes.

2.4.4.5 THREAD RAMPDOWN SECONDS Once the statistics-gathering

period had been run, this is the amount of time that the benchmark spends ramping

down to zero. The default value is 180 seconds, or 3 minutes.

2.4.4.6 ITERATIONS This is the amount of cycles of measurement are per-

formed. The cycles proceeds as described below in Section 2.4.5. The default value

is three iterations.

2.4.5 Benchmark Procedure

The benchmark proceeds, started by the client machine(s) by simulating many

HTTP client sessions connecting to the server which include HTTP GET and HTTP

POST requests at realistically randomized intervals modeled in a pattern that a

client driven by a real human would likely proceed. As the benchmark starts, the

amount of simulated client sessions interacting with the server slowly ramps up to
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the SIMULTANIOUS SESSIONS parameter over THREAD RAMPUP SECONDS

seconds. Before statistics are recorded, a warmup period of WARMUP SECONDS

seconds is run which allows the server’s caching to reach a stable level so that bias

from preexisting conditions in the server’s state can be eliminated. The amount of

client sessions then remains at that level for RUN SECONDS, so that a confident

statistical representation of how well the server is responding can be generated.

After the period of stat collecting, the amount of requesting sessions ramps down

over THREAD RAMPDOWN SECONDS seconds. They client side now pauses

for 300 seconds (5 minutes) before the cycle repeats ITERATIONS times to make

for that many RUN SECONDS long stat-collecting sessions. This process is il-

lustrated in Figure 4. The results are calculated by the client software and if

TIME TOLERABLE is above 98% and TIME GOOD is above 95% the bench-

mark passes for that level of SIMULTANIOUS SESSIONS. TIME TOLERABLE

is defined as the percentage of requests that were completed within four seconds

and TIME GOOD is defined as the percentage of requests completed within two

seconds.
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Figure 4: Ramp-up and Ramp-down Characteristic of Benchmark

3 Related Work

3.1 TUNEX by Samadi - 1989

TUNEX was a system developed by Behrokh Samadi and published in 1989 [26].

It was a system developed with the same inspiration as this project. It took data

from UNIX tools such as the System Activity Reporter (sar), Activity Disk Profile

(sadp) and Accounting Commands (acctcom) and applied heuristics to tune the

UNIX system.

These heuristics are organized into three levels. Level 1 is the basic set of if-then

heuristics that lay out the condition-response sequence for tuning a system. These

are the simple expert system rules that a system administrator could easily apply

without intensive analysis. They are directly based off the rules described in the

tuning and system administration manuals. For example, “if CPU is highly utilized

and wait for I/O is high and the disk buffer cache hit ratios are low, then recommend
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increasing the number of disk buffers.” TUNEX tests the conditions by using a

simple crisp-value comparison method which trigger the heuristics to recommend a

response. This is similar to the autonomic agent concept which is related to, but

external to the present work.

Level 2 is a set of modules that analyze the effects of adjusting certain parameters

on the system. For example, a shadow disk buffer would be allocated and the kernel

would be modified to keep track of the utilization of the normal buffer and the

shadow buffer and then try to quantify the gained benefit of permanently allocating

the shadow buffer as an addition to the normal buffer. This is also closely related

to the work that would have to be done to develop a functional autonomic agent

module that would put the results of the predictive models built here to use.

Level 3 was a planned extension to the existing TUNEX base which was not com-

pleted. The intention for the Level 3 heuristics to learn from historical data. As

was found in this work, it is a non-trivial problem to tackle. Full exploration of this

topic would most likely require a great amount of work dedicated to it on its own.

This work was done before the concept of Autonomic Computing was formalized,

but it shares the same mindset of design. From examining the published paper is

that the UNIX system circa 1989 being described is much more primitive than the

Solaris 10 being used for the present set of work. Modern operating systems have

much more sophisticated resource management default algorithms and tuning in the
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areas being described are no longer necessary [17]. An autonomic system like the

one being done in the present work applied to a system like is being described in the

1989 work could likely be much more effective since the problem domain is much

more straightforward and the default OS behavior is grossly inefficient by modern

standards. While the work is quite analogous, the problems it solves are outdated

and largely unnecessary due to modern operating system engineering.

The present work here would possibly be able to interface with a modern imple-

mentation of a system akin to TUNEX. This would work by providing premises

which the heuristics could use. TUNEX would then be functioning as the policy

application entity of the autonomic agent.

3.2 Apache Autotuning Agent by Diao, Hellerstien, Parekh

and Bigus - 2003

A related system was constructed by Diao, Hellerstein, Parekh and Bigus which

controlled the CPU and and memory utilization of the Apache web server by dy-

namically tuning application parameters [5]. This work was published in 2003 as a

venture into Autonomic Computing. It represents a simple case of the task of an

autonomic agent to self regulate based on resource consumption.

Using this system, the system administrator would set the desired CPU and Memory

resources for Apache to consume in the agent instead of manually tuning Apache’s

29



parameters to hit a target. The agent would exploit the relationships between

the tunable parameters and the resource consumption to keep the consumption

aligned with the administrator’s specification. The agent would accomplish this

by periodically re-examining the system state and adjusting the MaxClients and

KeepAlive parameters of Apache to keep the system near the target. Apache is

designed to allow dynamic adjustment of these parameter to avoid server downtime

which would occur otherwise in an application restart with new parameters. The

mechanism for control is that of a state feedback controller. It works by applying

heuristics to the observation of system state to control the system.

In this work, construction of the agent was facilitated by ABLE (Agent Building and

Learning Environment) [3], a Java-Based framework for constructing and deploying

hybrid intelligent agent applications. Time series data was collected which illus-

trated relationships between the system resource consumption and the KeepAlive

and MaxClients parameters. This data was used to develop a linear quadratic regu-

lation controller to function as the repository for the control heuristics of the system.

This is an excellent example of engineering a system to be administrated at a dif-

ferent layer of abstraction. One that doesn’t leave the raw parameters exposed for

a system administrator to have to ponder and spend time and effort to tweak. It is

representative of a design perspective in a relatively simple implementation which is

the exact definition of the Self-Configuration and Self-Optimizing autonomic prop-
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erties as it is interpreted for the present work.

3.3 An Architectural Approach To Autonomic Computing

by White, Hanson, Whalley, Chess and Kephart - 2004

This particular work was an attempt to invent design patterns and common under-

standing which can facilitate the design of autonomic systems [32]. It belongs to

an initial set of literature generated by IBM to start the movement for Autonomic

Computing. It addresses challenges involved for the construction and interaction be-

tween different elements of a self-managing system and lays down a rhetoric which

can be used to build future discussion.

The first definition this piece makes is the that of the Autonomic Element. This is

a self-contained piece of the infrastructure that has a responsibility in a particular

area and exists decoupled from the rest of the autonomic apparatus. These elements

must have a defined set of behaviors which govern how they behave and interact

with the other elements. Examples are given of several infrastructure elements such

as a registry for allowing elements to find each other, a sentinel which provides

monitoring services, an aggregator which combines information in a value-added

manner, a broker that facilitates interaction between elements and a negotiator

which reasons and assists elements with coordinated effort.

The second definition is that of the policies of the autonomic system. Policies
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describe a desire for a certain behavior of the system. These exist in the form of

action polices which are a heuristic for simple if-then actions, goal policies which

describe conditions that must be obtained without explicitly describing the ways of

obtaining them and utility function policies which are responsible for ranking the

value of several goals when needs for trade-offs exist.

This piece also suggests strategies for architectural design to address the four schools

of autonomic design. These being self-configuration, self-healing, self-protecting and

self-optimization. This is a fairly easy exercise for someone who understands the

problem domain, but it is done as an exercise under the newly defined rhetoric. The

paper references two real-world prototype systems that were built, one for resource

allocation and the other for data center management as examples of the developed

design patterns.

3.4 Supporting Autonomic Computing Functionality via Dy-

namic Operating System Kernel Aspects by Engel and Freisleben

- 2005

This paper presents the TOSKANA toolkit (Toolkit for Operating System Kernel

Aspects with Nice Applications). This is an attempt to implement dynamic aspect

oriented programming into an operating system.
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It is a major observation of this paper that aspect-oriented programming is a nec-

essary component of Autonomic Computing. In the case where an autonomic agent

wishes to modify a software system such as an OS, an AOP (Aspect-Oriented Pro-

gramming) model is an excellent abstraction for the agent to interact with. A few

examples are provided for aspects which address the self-configuration, self-healing,

self-optimizing and self-protection qualities necessary for Autonomic Computing.

Dynamic aspects in this context is the ability for an entity, such as an agent, to

apply the aspect without otherwise interrupting the execution of the kernel. The

TOSKANA toolkit is capable of splicing instructions into a compiled binary under-

going execution in an almost identical fashion as DTrace [35]. By adding function-

ality into the code dynamically, the system can be modified to suit the autonomic

goals.

This system was implemented using the NetBSD kernel where a method was found

to access the kernel memory space to facilitate the splicing in of code. Dynamic

aspects are able to be ‘woven’ into the kernel through the TOSKANA toolkit which

inserts the behaviors into the binary code by adding jump instructions to the new

code.

The paper was published just after DTrace was released to the public. A section

near the end acknowledges DTrace as a system that is interesting in conjunction

with this particular work. It is clear that the author did not do a full analysis of the
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full capabilities of DTrace in the autonomic domain but it was worth mentioning

because it uses a similar mechanism for inserting dynamic behavior into real-time

running code. A second interesting point, not explicitly mentioned but indirectly

implied (likely because it is out of the scope of this particular paper), is that DTrace

would be perfectly wedded with TOSKANA in an autonomic setting to serve as the

kernel instrumentation by which the agent can base decisions off of in order to invoke

these dynamic kernel aspects. Together, it would allow the autonomic agent to make

its round-trip from system monitoring to actions re-arranging the system without

breaking out of this dynamic execution.
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4 Research Scope

4.1 Autonomic Scope

In literature on Autonomic Computing, there is reference to the fundamental algo-

rithm of an autonomic system. That algorithm is thus:

1. Examine system (check log files, etc.)

2. Diagnose problems

3. Fix problem

4. Repeat

First, the system is monitored for data relating to the internal operations. In the

initial Autonomic Computing literature generated by IBM [14], this consists of mon-

itoring log files and system statistics provided in the system to develop metrics of

activity. The second step is to diagnose any problems or issues occurring in the ongo-

ing deliberation of system functionalities. Once an actionable problem is diagnosed,

the problem can be fixed or compensated for by the autonomic agent. The fourth

step as shown above is the indication that this is a ongoing iterative process. Since

the autonomic agent cannot become tired or neglectful as a human administrator

can, the agent can be applying this process at all times.
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The core of this particular research is to address the first step of the algorithm

and to provide information which is a partial component of the second step. The

autonomic agent and system as imagined for this particular work are illustrated in

Figure 5. The autonomic agent is a layer built on top of the hardware which makes

up the computer system. While it is composed of software, it can be envisioned as a

separate entity which communicates and interacts with the larger system. In Figure

5 the focus of this research is shown as a part of the autonomic agent. By utilizing

a datastream obtained from DTrace, this system will process the data to construct

premises which the decision maker of the autonomic agent can uses to make its

choices. This component is comprised of two significant subcomponents. The first

being SOASE (detailed in Section 5.3) and the second being the predictive models

which take data from SOASE and generate the premises for the decision maker to

reason upon.

Invoking the terminology of White [32] reviewed in Section 3.3, this work is exam-

ining the construction of sentinel autonomic elements to provide system monitoring

and also aggregator autonomic elements to combine the collected data into higher-

level meaning.
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4.2 Road Map

SOASE took a significant amount of design and effort to construct. Its purpose is

to extract and process DTrace information from a Solaris 10 system to turn into a

datastream for the higher-level functioning of an autonomic agent. The internals

and construction of SOASE are detailed in Section 5.3

The next phase in the construction of this system is the lower-level intelligence

layer of the system. Specifically, the mechanism for providing premises for the

higher-level intelligence of the autonomic agent to reason upon. In this work, it

takes the form of two components, the quantitative and the qualitative prediction

models. These two components are supplemented by a third component which

gives an assessment of the confidence in the answers in the context of the current

situation. The qualitative and quantitative models employ trained Fuzzy Neural

Networks (detailed in Section 5.4) to process the datastream into classifications

of the real-time workload characteristic. The experimental segment of this research

focuses on the ability for these components to perform their task with the developed

datastream from SOASE.

Figure 6 represents the architecture of the system as implemented at the conclusion

of this work. This is a more targeted view of the system in Figure 5 drilled down

into the context of the specific work being done. Represented in both figures are

the qualitative and quantitative prediction models which are designed to answer
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two specific questions of the autonomic agent’s decision making component and

additionally, a third component which addresses the confidence of the qualitative

model’s prediction.

The analytical segment of this research is focused on the proof-of-concept of these

quantitative and qualitative prediction components. The form that this investiga-

tion takes is a set of experiments which are outlined in Section 6. They take the

form of three investigations. The first is regarding the qualitative prediction model,

which is the more complex, is referred to as the QL model and is discussed in Sec-

tion 6.1. The quantitative prediction model is referred to as the QT model and

is discussed in Section 6.2. The component for determining the confidence of the

the qualitative model is discussed in Section 6.3 and is referred to as a confidence

monitor. The obtained results of the investigation are presented and discussed in

Section 7.

This research goes no further than this question-answer interaction within the agent.

While it was initially hoped to develop an entire control system much like the Apache

Autotune Agent [5], the effort involved proved to be well beyond the scope for this

project. It is therefore, left for future work to explore the possibilities of constructing

a full autonomic agent to regulate the system. The discussion of this future work

and other extensions to the work being done is contained in Section 8.2.
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4.3 Procedure Framework

This section presents a procedure of steps which were followed to construct this

prototype system. It is written as a guide for constructing a similar system as an

aid to future work. It references the specific work done to construct the apparatus

such as the construction of SOASE (which is detailed in Section 5.3) and the neuro-

fuzzy learning technique (detailed in Section 5.4). In a extension of this work, these

components could plausibly be replaced with some other analogous construct as an

alternative.

1. Determine Target System – Computer hardware that comprises an autonomic

system is likely to be quite varying. The work here is not to discover principals

that can be applied to a wide range of different equipment. The analysis done

in this work is directly tied to the specific behavior of a particular system.

Also, a critical component relied upon is DTrace which limits the choice of

operating system platform.2 To embark on this work, that particular testbed

has to be decided on as the hardware platform to collect data for. The data

is assumed to be only relevant to that specific configuration of hardware. A

SunBlade 1000 system and a particular suite of software detailed in Section

2At the time this work was started, DTrace was exclusively available in Solaris 10,

however it has since been ported to Mac OS X 10.5 Leopard and an effort has been

announced to port DTrace to a future version of FreeBSD
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5.2.1 was the choice made for this work.

2. Write Plugins for SOASE – SOASE is the instrumenting tool that was con-

structed for this particular work. It provides the data on which the analysis is

performed. At this stage, the scope of the system monitoring (specifics regard-

ing daemons) must be determined. This may be taken in conjunction with the

next step in that the areas of system activity to monitor may be targeted to

provide coverage in the area that is needed.

3. Determine a Set of Comparison Points – Here, a decision needs to be made

about the objective of the development of an autonomic system. As was dis-

cussed earlier, the target for this autonomic system is the webserver environ-

ment and the desire is to make qualitative and quantitative assessments about

the load being experienced. To make the assessment, the system needs refer-

ence points to compare against. This is a semantic framework which is used to

frame an answer to the inquiry. For this work, the three types of SPECweb2005

workload and the unit of one client sessions as designed by SPEC serves that

purpose. In a different problem domain, outside of webservers and with differ-

ent areas of assessment by the autonomic agent, a different choice would likely

be necessary.

4. Design Training Data – Since this work uses a trained neuro-fuzzy method, an

existing dataset is needed to train the model. For good results, this dataset
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must be representative of the data that the model would encounter in a pro-

duction system in a real-world scenario. Along the spectrum of output the

model is to produce, sufficient coverage by the training data’s points must be

represented. In this work, special care was taken in the design of the training

datasets to reflect the aspects of the necessary prediction output space.

5. Collect Data – The purity of the training data must be ensured. The collecting

system should have minimal impact on the system resources to not influence

the reading. In this work, low system impact was architected into SOASE and

precautions were taken in the testbed to make sure there was no unaccounted

factor influencing the datastream. Also, the training values associated with the

different workloads being run must be as accurate as possible. In this work,

the SPECweb2005 benchmarks are allowed to stabilize at the specified level

before data is recorded to make sure the datapoints from that run assigned a

training value are as uniform as possible.

6. Train Models – The next step is to extract the contained knowledge from the

dataset. Since the major component of this research is that of qualitative classi-

fication, a soft computing approach is well-suited. In this work, an application

was written which applies the two-phase neuro-fuzzy learning technique and

outputs the model to a file which can be used later.
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7. Validate Models with Independent Data – To ensure the validity of the trained

models, a new set of data must be run through it. This dataset must be

crafted carefully to be independent from the training set which ensures the

actual knowledge of the model is tested.

Following these steps will produce a set of models capable of making the classifi-

cations desired in the design. If the goal is to obtain the predictions in real time,

the simple step of connecting the models to the real-time datastream remains. This

task is not explored in this research. For the purposes of this exploration, this

skipped step is of no value. The validation datasets serve as a simulation of this

real-time deployment, where analysis can be conducted to evaluate the aptitude of

the solution.
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5 Experimental Platform

5.1 Overview

This section overviews the elements that had to be assembled to provide a testbed

which allowed experimentation to be performed. That includes the physical hard-

ware and prepackaged software setup (Section 5.2.1), SOASE (Section 5.3) and the

Neuro-Fuzzy learning method that was adapted (Section 5.4).

5.2 Prepackaged Hardware and Software Setup

The hardware and software setup contain no components custom-built for this work.

The discussion here details the assembly of pre-packaged components which were

necessary to facilitate the further construction of apparatus. Here, they should

be considered as an explanation of the setup mainly for completeness, but their

construction is not representative of any gained value specific to this work.

5.2.1 SunBlade 1000 Systems and Network

The test hardware used in this work is three identical SunBlade1000 towers and

a Linksys WRT54GS (V.6.0) router modified with DD-WRT firmware. The tower

systems have dual 750MHz UltraSparcIII with 1GB of RAM and 37.5GB 10000

RPM SCSI drives running Solaris 10. One runs the client software (Client), another
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runs the BeSim (Backend Simulator) and the third is the server to be tested (System

Under Test, or SUT). The webservers on the BeSim and SUT are running Apache

(V. 2.2.3) using a PHP preprocessor (V. 5.1.6). The BeSim additionally requires

mod fastCGI (V. 2.4.0 is used in this case). These machines connect to each other

over 100Mbit Ethernet through the switch in the Linksys router. Figure 7 shows

a diagram of the network setup. The router provides a firewall against all outside

Internet traffic which could make its way in and influence the test.

SunBlade 

1000

SunBlade 

1000
SunBlade 

1000

BeSim Server Client

WRT54G Router

and Switch

WAN

Internet

Figure 7: Benchmark Platform

5.2.2 Hardware Setup

Identical SunBlade 1000 systems are used as the three necessary machines. Here,

the specifics of the setup are detailed.
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5.2.2.1 Client The client is the machine that initiates the HTTP requests to the

server and times responses. The SPECweb2005 client software can optionally be run

on multiple client machines which make requests to the server. This is because the

client simulation software is somewhat demanding of system resources. For all cases

explored in this research, one system was able to handle the client simulation. For

a larger simulation it may be necessary to spread the load over multiple machines

so that the simulation is not bottlenecked on the client side.

5.2.2.2 Server This is the machine that is under the scrutiny of the benchmark,

sometimes referred to as the System Under Test or SUT. It is set up with a web

server, a choice of PHP or JSP and SSL (more description to come in Section 5.2.3).

The PHP or JSP script execution by client HTTP or HTTPS requests is what

drives the hardware and the efficiency that the requests can be completed is what

the benchmark measures. The system is designed in such a way that this is the

only software running on the system. It is simply a web server serving a special

web application. All measurement is done on the client so there is no benchmark

overhead cost incurred on the server.

5.2.2.3 BeSim This machine runs a simulation of the backend services that a

webserver would likely access. This includes application and database services that

would likely be present in a real system. On this machine, there is no actual database
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software running. Instead, for simplicity, a simulation of the delays that would be

experienced by interacting with a real backend. This machine has to be set up with

a web server, PHP or JSP and fastCGI modules (again, see Section 5.2.3). The

server interacts with the BeSim system by accessing PHP or JSP scripts through

HTTP interactions over the network.

5.2.3 Software Setup

There is a requirement of software dependencies to facilitate the benchmark. A

few choices need to be made by the benchmark administrator while setting up

the testbed. The software for the necessary three hardware systems is discussed

independently below.

5.2.3.1 Client The client setup is relatively simple. The SPECweb2005 client

software is written entirely in Java so, the only requirement is that each of the clients

in the benchmark have a JVM installed (V. 1.5.0 06 in this case).

5.2.3.2 Server The server system needs to be set up with a web server package.

The choice is given to the benchmark administrator which package to use. All are

valid choices as long as they handle all standard HTTP requests and are able to

preprocess the SPECweb2005 scripts. A version of the SPECweb2005 scripts are

written is available in PHP and also JSP. The administrator will have to choose
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which one he or she wants and set up the testbed accordingly. Algorithmically, they

are identical and the choice should not have any significant effect on the benchmark.

Before the benchmark is run, the server needs the SPECweb2005 file resources

installed on the filesystem for the server to access and serve to the client when

requested. These files are the static pages, images, product descriptions and support

files needed to serve to clients.

5.2.3.3 BeSim The BeSim requires a similar setup to the one done for the

Server. A webserver software package which can process the PHP or JSP scripts is a

requirement. If Apache is used, as it is for this setup, mod fastCGI is a requirement.

There are no file resources required by the BeSim. All interaction with the server is

through the web server software and the SPECweb2005 scripts.

5.3 Sysmonkey Open-Architected Sentinel Element (SOASE)

5.3.1 Overview

DTrace’s D language is quite complex and robust. It allows the administrator target

very specific elements of the system and obtain very specific data regarding that

element’s operation. This is somewhat contrary to the informational needs of an

autonomic agent. The agent requires information that is quite general in describing

aspects of how the system is operating. As a result, relatively simple scripts were
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written which monitor general are in the prototype phase of the system. To collect

and process this information, the Sysmonkey Open-Architected Sentinel Element

(SOASE) was constructed. Full exploitation of the abilities of DTrace is not taken

advantage of. In a limited capacity for this initial exploratory research, its unique

abilities are leveraged to great benefit. It is left to future work to re-examine the

scope of DTrace’s usage in this way. The open-architecture design of SOASE was

chosen to take the desire for future expandability into deliberate accommodation. It

does this by decreasing coupling between the data collecting modules and the main

aggregating component, allowing for different or additional data collecting modules

to be added.

The SOASE was created to facilitate the monitoring of a Solaris 10 system. It

monitors, preprocesses and presents data gathered from a live system in a sentinel

element role of an autonomic agent. SOASE is primarily designed to handle moni-

toring data collected by DTrace which has access to extremely granular data from

the use of custom written scripts. In addition to DTrace, it utilizes some facilities

such as vmstat and kstat to gather some higher-level figures to present along with

the other calculated figures.

The output of SOASE is a datastream of values for pre-defined measures of several

aspects of the system activity. This listing is intended to be read programmatically

by the aggregator element component of the autonomic agent, but is also inter-
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pretable by human eyes and could plausibly be used by a system administrator to

diagnose. In this scenario, the human could take advantage of the preprocessing

done on the raw data to obtain a high-level advisement. However, the goal of this

research is to examine the needs of a software autonomic agent for managing the

system.

A difficult challenge to be addressed by this design is to sort through and summarize

the complexity without ‘dumbing down’ the result for human analysis. This can be

illustrated better with an example. The load average statistic in a UNIX system is

the average count of processes waiting in the ready-to-run state over a set amount

of time. This measure is always provided over time intervals of one, five and fifteen

minutes. An autonomic agent may be interested in this value over much shorter, or

even much longer timeframes and should not be limited in this fashion. A primary

function of SOASE is to perform data collecting and bookkeeping in order to provide

proper flexibility to the agent.

5.3.2 Open Architecture Design

5.3.2.1 Design Overview There is no expectation of coming up with an all-

inclusive monitoring scope, which is why the possibility for future expansion must

be left open. Therefore, the requirement is that it be designed in a way which

accommodates for new modules to be easily inserted. Also, given the exploratory

51



and experimental nature of this work, this design is preferable to allow the easy

addition of modules which monitor new statistics or families of statistics.

There is also design consideration for each of the modules to offer some flexibility

in the statistics that are provided. Each module has an associated daemon which

monitors the applicable DTrace probes and collects the data in memory structures.

The main SOASE process is given a choice and will request certain stats the daemon

is capable of generating. The stored data will then be processed into the desired

result. This late-binding approach ensures the most flexibility by allowing variable

parameters to be passed to the daemon.

5.3.2.2 Architecture As can be seen in Figure 8, the system takes on a layered

architecture. The lowest level is the DTrace Layer containing D scripts which collect

the raw data from the system. The data is passed upwards to the Daemon Layer

process, which stores and processes it. Then the data, when requested is passed

upwards to the main SOASE process through the specific module interface of the

Collection and Processing Layer.

5.3.2.3 Modules Each module, as was seen in Figure 8 has three elements:

1. A DTrace D script process in the DTrace Layer

2. A daemon process in the Daemon Layer
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3. A module interface in the main process in the Collection and Processing Layer

The DTrace script process is an executed instance of the console dtrace command

running a script custom written for this module. It is invoked as a coprocess of the

daemon process. All interaction is one-way, the script dumps its traces to standard

out and they are read in by the daemon.

In the final version used for the analysis in this document, there are two daemon

processes that are not tied to a DTrace script. One is invoking vmstat command

running at a frequency of one second to monitor the free memory, swap and CPU

activity. The second is querying the kstat API to monitor the levels of the DNLC

cache. These were left this way as opposed to an identical DTrace-based solution
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because this was the most direct and simplest way of obtaining these particular

values and no extra benefit was perceived to come from porting their operation to

DTrace.

5.3.2.4 Main SOASE Process The main SOASE process is responsible for

collecting all information from the daemons. It parses the optional command line

parameters and passes correct messages along to the individual daemons, collects

the responses and displays the results.

To communicate with the daemons, the main SOASE process opens a new domain

socket to each and follows a protocol to request the information. This protocol

follows a similar form for all daemons which eases the process for the addition of new

modules, however the limitation exists that specific module interface code must be

compiled in the main process codebase to handle the specific daemon. Less coupled

architecture could be implemented which loads the interface binary in at runtime,

but this was rejected to save time in implementation. Recompilation of code is not

a prohibitive barrier for when new functionality is needed in the prototype phase.

5.3.2.5 Inside The Daemons Linked list data structures are employed to

record events over time for a quite large time duration. This allows the data to

be processed dynamically when a request from the parent process arrives at the

daemon. This was chosen, as opposed to the destructive aggregation of data, to
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meet the flexibility for later additional functionality requirement as discussed ear-

lier. The UNIX domain socket accept() call is used to maintain concurrency within

the daemon, since it has to be constantly handling both new data arriving from

DTrace and requests from the main SOASE process at random intervals. These

requests will be handled in the order that they arrive, with their serialization guar-

anteed by the accept() call. This ensures that that the main SOASE process requests

are met with the data current up to the exact point in time that the request is made,

since the requests have to wait in the same queue as the incoming data.

5.3.3 Daemons

5.3.3.1 Overview This is a description of the six daemons of SOASE which

were implemented and are used for the system analysis presented afterward. They

were designed to cover an adequate subset of each of the four major subsystems in a

computer system: CPU, Hard Disk, Memory and Network. The first four daemons

were created to address those four in order and the last two were created to provide

some other supplemental data. This is not a comprehensive set of system monitoring

that could potentially be useful for this application. At this point, it is intended

to establish a reasonable amount of coverage which could be built upon. Future

work could include expanding this set to examine a greater cross-section of system

activity.
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The first four daemons utilize DTrace, whereas the last two get their data from

the kstat kernel utility. kstat is able to provide similar data as DTrace, however

it has shortcomings. Most prominently, obtaining data from kstat must be done

on request, rather than DTrace’s interrupt style of monitoring. That is, when a

probe fires, the Daemon process can be notified immediately and they are received

in order that events occur with an associated timestamp of the event. With kstat,

the process has to poll the API at a regular interval for counter values kept track

of inside the kstat kernel component. As a result, the data that can be obtained

from kstat is of lower quality (it is aggregated and preprocessed) and the task of

obtaining it is much more awkward. The values that SOASE obtains from kstat

in this case is only supplemental to the more prominent DTrace monitoring. More

description of this follows in the descriptions of the individual daemons.

5.3.3.2 procd This daemon provides a monitoring statistic which is quite similar

to the Load Average statistic which is available on all Unix systems. The Load

Average of a system is an average count of runnable processes that are waiting in

the run queue or currently running over 1, 5 and 15 minute intervals. By consulting

this statistic, an administrator can find out how busy the processors in a system are.

If the load average is less than the amount of CPUs in the system, this indicates

that the system is idle at least some of the time. A load average greater than

the amount of CPUs in the system indicates that the system is past its maximum
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capacity proportional to the magnitude of the reading and there are likely slowdowns

in process response times and throughput. The calculation of this statistic is very

dependent on the sample rate of the polling of the process run queues. In Linux,

and traditionally in Unix systems, this sample rate is every five seconds. [10] This

is a problem with processes that are very short-lived and processes that wake up at

a fixed interval which is less than or near the sample rate which cause this statistic

to be quite inaccurate at times. SAR, the system activity reporter samples the run

queues at a rate of once per second which is what gets provided to the Load Average

statistic in Solaris 10, so it is easy to see how this can produce inaccurate numbers

at times.

Here, with this daemon, we can increase the accuracy by increasing the sample rate

to 1000Hz. DTrace also is able to minimize the performance impact of this measure-

ment. With an increased sample rate, we can get an extremely accurate view of the

processes queued up for the CPUs, which is more exact for the purposes needed in

this research. The data is obtained by invoking the profile-1000Hz probe and access-

ing the data structure provided by DTrace of the current thread pointer and checking

the length of the runqueue (currthread->t cpu->cpu disp->disp nrunnable).

5.3.3.3 iod Hard drive access is often the biggest cause of slowdown in a com-

puter system because it is the only part of the machine that has physical moving

parts. A tool, iostat is provided in Solaris 10, which give measurements of the
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amount of data written or read from the drive. Similar tools are quite common in

other operating systems. This is a high-level abstraction of the underlying issues

that are present intended for human interpreters and is an excellent example of the

problem described in the introduction of this document. Missing is the notion of se-

quential vs. random data access to a physical disk. Sequential access can provide a

large data transfer rate and still have capacity to spare simply because the physical

drive head does not need to spend time moving to provide I/O. Random data access,

on the other had, can saturate a drive without indicating a high data throughput.

This is because the drive head has to spend time moving back and forth across the

cylinders. One would think that this could be addressed by also tracking the other

factors which can lead to hard drive access such as system calls and page ins/outs

and track the diversity of the locations involved to find out how far the drive heads

are moving. While this option is available, it is sub-optimal. To improve hard drive

performance, operating systems often cache content in memory and perform reads

and writes in more efficient bursts to cut down on the head movement. Any meaning

obtained from a measurement of drive access obtained from the non-DTrace tools

the system becomes obfuscated in the internals of the operating system because the

of these optimization.

This daemon cuts through all the abstraction and monitors right down at the I/O

driver. It utilizes the io:::done probe from the kernel’s hard drive interface driver to
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measure actual physical movements of the hard drive by recording the block number

specified in the parameter of the kernel function associated with the probe (args[0]-

>b blkno). This probe also provides stats on how much data was read and written

to the drive (args[0]->b flags to determine whether operation is a read or write

and args[0]->b bcount for the size of the data). Collected along with these drive

transactions is the timestamps, and by implication, the serialized order that they

occurred. This is especially useful for Autonomic Computing applications, since

these raw statistics are exactly what are needed for recommending reconfiguration

of the hardware in the disk subsystem.

5.3.3.4 paged The memory management subsystem is the next major system

in need of monitoring. This system is responsible for bringing data into memory

from the hard drive as needed and also providing memory to running processes. The

daemon tracks the page-ins, page-outs and page-frees of the three types of memory

pages in Solaris 10 which are executable pages, anonymous pages and filesystem

pages. The probes:

• vminfo:genunix:pvn write done:execpgout

• vminfo:genunix:pvn write done:execfree

• vminfo:genunix:pagio setup:execpgin

• vminfo:genunix:pvn write done:anonpgout
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• vminfo:genunix:pvn write done:anonfree

• vminfo:genunix:pageio setup:anonpgin

• vminfo:genunix:pvn write done:fspgout

• vminfo:genunix:pvn write done:fsfree

• vminfo:genunix:pageio setup:fspgin

are the ones utilized for this daemon. When fired, they indicate a respective page

in/out/free operation has taken place. The occurrence of these events are recorded

and aggregated to pass upwards to the main SOASE process.

Executable pages are those which are binary executable programs that, to be run,

need to reside in main memory for the CPU and faster caches to access in order to

run. Anonymous pages are memory which is allocated by the processes for their own

purposes. They generally are not a cache of content on the hard drive, since they are

created on the fly by the processes, but in situations where memory is low, these are

the pages that will be paged out and written to the swap space for later retrieval.

File system pages are pages of data which are brought in from the hard drive at the

request of a process for reading or modification. In Solaris, all memory which is not

take up by Executable or Anonymous pages is often taken up by file pages which

cache content in the chance that they are needed. The exact meanings of page-ins,

outs and frees vary slightly for each type of page, but in general, page-ins means

that the page has been allocated in memory and populated with the intended data,
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a page out means that the page was moved from memory to its backing store on the

hard drive and a page free means that the page was destroyed without being written

out (writing out not necessary when identical data already exists on the drive) and

its space is returned to the free pool.

Solaris 10 has the vmstat tool which will give counts of these statistics sampled at a

specified rate in seconds to display for the administrator. This has shortcomings in

that it is also formatted for the human administrator to read and has a minimum

sample rate of one second. By utilizing DTrace probes defined at each paging event,

as each page action happens, the daemon records it specific to the millisecond in

the order in which they occur. The end result, the produced data format is the

same as vmstat, however the DTrace solution is much more accurate by not being

constrained to one second sample rates.

5.3.3.5 tcpd The last major area of the system that needs a monitoring element

is the network activity. This daemon monitors packets and data coming in and out

through TCP connections. The existing facilities to monitor the traffic available

are the netstat tool and also the truss tool which can monitor system calls to a

network socket. Again, the problem with these tools is that they are made for

human reading for diagnostic purposes, so they are a difficult fit to our needs. This

daemon takes a similar approach as iod by going deep into the kernel to get the

rawest data possible. This daemon uses probes from the networking stack to record
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the number and size of packets incoming and outgoing from the network and is able

to provide counts for data throughput, average packet size and counts for the total

packets sent and received. fbt:ip:tcp send data:entry fires when a TCP packet is

written out and fbt:ip:tcp rput data:entry fires when a TCP packet arrives and the

size can be determined by the associated kernel function’s parameters (args[2]).

Examination of other transport-layer protocols are possible through DTrace in the

same way that TCP connections are instrumented here. They were overlooked

because it was known at the time of the design that monitoring of SPECweb2005

benchmarks were to be the focus of this work. What is generally though of as web

servers (serving World Wide Web requests) typically stay within the domain of TCP

connections. This is the case for the three types of SPECweb2005 behaviors. In

the case that SOASE were to be extended for other applications, similar monitoring

could be constructed for UDP or other network stack behavior.

5.3.3.6 kstatd Unlike the previous four daemons, kstatd does not utilize DTrace

to obtain its data. Rather, it uses the kstat API which is provided by the kernel. It

is accessed through a written program that uses the kstat.h interface and calls the

kstat data lookup() function to obtain the structures which contain the data. The

merits of this are discussed above in the overview. This daemon was developed as

an attempt to monitor the filesystem from the perspective of the kernel’s interaction

with the filesystem modules. This proved difficult, since Solaris 10 supports many
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different filesystem types (UFS, NFS and ZFS being the major ones among many

other minor ones) and each has its own segment of the kernel which applies. This

daemon has the single task of monitoring the hit rate of the Directory Name Lookup

Cache (DNLC) which is a cache in memory which maps file names of the mounted

filesystems to inodes in the kernel. The DNLC is the only kernel component relating

to the filesystem which is common to all. Initially, for the purposes of this research,

the filesystem was treated as the fifth major component of the OS which needs to

be monitored. Upon further exploration, it became more apparent that it has many

overlaps in scope with other subsystems and cannot be deemed as important. This

daemon, while less important, is still useful and was kept as part of the suite.

As is often the case in modern computer systems, the size of the filesystems are

quite large. This can potentially become a rather large table which cannot be fully

kept in memory at all times. The DNLC hit rate is the percentage of time that a

kernel looks up a filename and doesn’t have to page in part of the DNLC from the

disk to make the mapping. This daemon goes into the kstat facility at a regular

interval to obtain the DNLC lookups and DNLC misses over the last period and

stores it for processing by request from the main SOASE process.

5.3.3.7 vmstatd This daemon also does not utilize DTrace to obtain its data.

It instead uses the console vmstat tool to obtain some supplementary data. The

stats generated by this daemon are the CPU utilization and memory utilization.
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These are some basic stats that are easily available to the administrator in the

system from many different locations. They are the most basic and straightfor-

ward measurements available and they were included to add information into the

prediction model that would always be immediately available to any system ad-

ministrator. They are not erratic and context-specific enough to benefit from the

increased precision of DTrace. The daemon invokes vmstat every second and records

the instantaneous measure to provide to the main SOASE process when requested.

It should be noted that the vmstat tool obtains its data from the kstat API as well

and it would be possible to incorporate this data collection into kstatd. The reasons

for their separation trace back to legacy factors when this framework was being

developed. A future refactor of the SOASE codebase could result in merging these

two daemons for increased logical cohesion.

5.3.4 Datastream

The output set of data from SOASE will be referred to as the datastream. This

datastream is what is passed up the chain to the next components. Figure 9 il-

lustrates the measurements being passed into the stream broken down from the

individual daemons. All individual stats in a datapoint are a rolling time-averaged

value of the statistic’s reading over the last 10 seconds in the system. A datapoint

is added to the datastream represents one second of system activity. For example, a
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page-in event recorded by DTrace and processed by SOASE would be represented in

the average of ten different sequential datapoints from the second it occurred until

10 seconds later, when it it falls out of the rolling window.

The next elements in the chain to receive this stream of data are the neuro-fuzzy

models which comprise the aggregator element. Ahead in Section 5.4.3 there is

a discussion of the necessary fuzzification of this data. As a quirk of the system

architecture, the fuzzification is actually performed within SOASE, therefore in

actuality, the datastream is composed of the fuzzified sets of 3 or 5 values for each

of the 23 statistics listed in Figure 9. SOASE was constructed this way to decouple

the logic of the inner workings of the framework and the preprocessing of data

from the machine learning components which implements the network training and

evaluation.

65



SOASE

Head Distance
Disk Throughput
Disk Reads
Disk Writes

From iod

Runqueue Saturation

From procd

DNLC Saturation

From kstatd

TCP Bytes Sent
TCP Bytes Received
TCP Packets Sent
TCP Packets Received
TCP Packet Size Sent
TCP Packet Size Received

From tcpd

Anonymous Pages In
Anonymous Pages Out
Anonymous Pages Free
File Pages In
File Pages Out
File Pages Free
Executable Pages In
Executable Pages Out
Executable Pages Free

From paged

Datastream

Fuzzy Sets

CPU Utilization
Memory Utilization

From vmstatd

Figure 9: SOASE Output Datastream Composition
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5.4 Fuzzy Neural Network Training

5.4.1 Specific Application of Two-Phase Learning Process

The learning method described in Section 2.3.2 is used in this work to train models

from collected datasets. As a starting point, an implementation of the two-phase

training process was obtained from some previously unpublished work done within

the department. This was in the form of a program written in C for some specific

exploration of the training process. This program was hard-coded to work in a

different application with a different type of dataset, but with some modification,

it was made to work in the domain of this particular problem. Since this applica-

tion works with real-world crisp values, in order to plug the numbers into a FNN,

fuzzification and defuzzification transformation had to be done. This is covered in

Sections 5.4.3 and 5.4.4.

The backtraining method inherited from the code worked to train for accuracy of

the multiple fuzzy outputs and not final crisp values. As a result, it had to be

re-evaluated and modified to provide more accuracy in the training to meet the

crisp-value target. The specifics of the adaptation to the backtraining phase are

discussed in Section 5.4.5.

Also, a part of the inherited code is a scheme for cross-validation of the training

data. This is expanded to a 10-fold cross validation process which is required for

67



proper scrutiny of the knowledge which is gained by the model. The testing and

validation partitions made by these schemes are utilized differently in the two phases

which has the potential for causing confusion. Clarifying this procedure, as is done

in Section 5.4.2, is helpful for understanding the analysis of the trained models that

follows in Section 7.

5.4.2 Cross-Validation

Cross-validation of the models against the training data is not semantically identical

between the two phases of the training process. Inherited from the original code

was a scheme of holdout validation. The original dataset is split into two partitions,

one for training and the other for testing. The testing partition is used to test the

knowledge of the model trained with the training partition, however for this work, it

is only preliminary validation. Proper validation will be done with fully independent

data (which will be referred to as validation data sets) after the training process is

complete. This ensures that the validation and analysis is done on datapoints which

are independent from the points that are used to build up knowledge in the model.

In the revised implementation, the training is done in a k-fold manner with k equal

to 10. In essence, the new procedure is identical to the holdout scheme, but it is

conducted ten times with a different split of the partitions to provide the benefit of

multiple models to obtain a better cross-section of the learned characteristics. The
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data is split into ten equal partitions and the two-phase process is run ten times

to train ten networks. Each run uses a different partition as the testing partition

and the remaining nine as the training partition. Roughly the same proportion

of datapoints should be contained in each due to the randomized order. The ten

models are preliminarily analyzed and discussed in Section 7 using their respective

testing partition. In the validation component of this research in Section 7 where

completely new data is used, all ten models are again evaluated to provide a better

representation of the ability for the knowledge to be learned by aggregating the

results from ten different examples.

In the GP phase, the randomly generated and combined models of a generation are

scored for fitness based on how well the model performs (validates) on the training

partition. Since the scoring for selection is based entirely on this partition, there is

the risk of overtraining in this phase. It was observed that if the first phase was run

until the fitness levels out to an apparent minima, overtraining was occurring. It

was then observed that this trained model was unsuited to make any gains from the

second phase and resulted in a sub-optimal final result. By stopping the GP while

the fitness was still in motion towards the minima, the problem of overtraining is

avoided. That model, taken through the second phase results in a model with a

performance which is better than at the apparent minima in the first phase.

The backpropagation phase works by feeding the points of the training partition into
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the network one-by-one and making backpropagation adjustments to the weights in

the network. Here, the testing partition is not used for the backpropagation, but

it is essential as a metric of the training’s progression. So, in contrast to the first

phase, the testing partition is used as a metric of fitness instead of the training

partition. Again, overtraining is a possibility and was observed during the investi-

gation. An indication of this is when the performance of the model on the testing

partition becomes gradually worse as training progresses. The only way to com-

bat this phenomenon is to stop the training when the measured performance on

the dataset reaches a minima and it can be certain that a better minima will not

be obtained in a reasonable amount of time if the process is allowed to continue.

The final cross-validated score during the second phase is the basis for reaching a

stopping point for the training process.

To recap, the training partition is used to evaluate the fitness of evolved models in

the first phase and is use as the basis for the backpropagation training phase. The

testing partition is only used to determine the stopping criterion in the backpropa-

gation training phase and is reserved for preliminary analysis of the final resulting

model.
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5.4.3 Fuzzification

To work as inputs to the FNN, the crisp values have to be fuzzified. This is necessary

for a linguistic representation that will eventually be possible to be derived from the

model. A library routine was programmed to split a crisp value into any number of

Gaussian fuzzy sets.

The library routine works by taking the range of values which are the domain of the

crisp value and splits that region into multiple Gaussian fuzzy sets.

Given the domain of the crisp values [Amin, Amax], the height of function’s crossover

Bc, 0 ≤ Bc ≤ 1 and the cardinality of the fuzzy set, N , the resulting fuzzy transfor-

mation Fi(x) is calculated as:

Fi(x) = e
−(x−bi)

2

c2
i (2)

bi governs the horizontal offset in the domain and ci is a control parameter the

‘width’ of the curve. They are calculated from the provided parameters as follows:

bi = Amin + i(
Amax − Amin

N − 1
) (3)

xi = Amin + (
Amax − Amin

2(N − 1)
) + i(

Amax − Amin

N − 1
) (4)

ci =

√√√√−(xi − bi)2

ln(Bc)
(5)

Two examples are illustrated in Figure 10.
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Figure 10: Gaussian Fuzzy Set Parameters Illustrated
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Each monitoring statistic is split into a subjectively chosen amount of fuzzy parti-

tions. The number is chosen on a case-by-case basis by examining visualizations of

the result from the datasets. Values with clear ‘small’, ‘medium’ and ‘large’ spreads

were split into three fuzzy partitions N = 3 and the new points were labeled as

(original stat) few, (original stat) some and (original stat) lots. This is chosen be-

cause, that is likely how one would refer to the values linguistically when describing.

This was done as a ‘cheat’ to help the training phase of the models pick up on these

trends easier by designing these particular fuzzified inputs in an intelligent man-

ner. Values which have a much more ambiguous spread were split into five different

fuzzy partitions N = 5, using suffixes ‘not very much’,‘a few’, ‘a bunch’, ‘a lot’ and

‘tons’.

For simplicity, the crossover point, Bc was chosen to be 0.5, since there was no

reasonable motivation from making any adjustment at the time which this was

designed.

The domain parameters, Amin and Amax, were also chosen on a case-by-basis for the

statistics obtained from the SOASE daemons. The practical range of values that

occurred in in the running of the likely target workloads of this particular research

was determined through observation. In the case a point is observed out of the

bounds, the value is clipped to fit the maximum or minimum level of the domain.

By nature of many of the measured statistics, for example packets received, a reading
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of zero is the minimum observed, often in the case of no system activity. In these

cases, a negative reading is nonsensical so the lower bound was chosen as zero.

5.4.4 Defuzzification

On the output end of the network, three values comprises the fuzzy set which rep-

resent a crisp value. To obtain that crisp value, a defuzzification operation needs

to be done. A routine is used which defuzzifies the set by performing a center of

mass calculation (COM) on a shape composed of superimposed alpha-cuts of the

three Gaussian functions. This step, in practice, is quite time-consuming during the

training process and consumes the majority of the CPU cycles. The center of mass

calculation is done by splitting the surface into n differential areas and proceeding

with the center of mass for a n-particle system. For the GP and backpropagation

process, this routine needs to be executed many times and it proves to be a large

bottleneck if a large n is used. To speed up the training process, a reasonably accu-

rate approximation was used for the purposes of this work with a n = 60. A middle

Riemann sum approximation calculation is done to minimize the error for low n cal-

culations. The y-coordinate of the center of mass is irrelevant for the defuzzification.

The x-coordinate of the center of mass is what the routine produces.

First, the function of which we are approximating the contained area of, F (x) has

to be defined. It is the superposition of the α-cuts of the membership function. In
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this example, we will assume the amount of fuzzy values we are defuzzifying is three.

f1(x), f2(x) and f3(x) are the α-cuts of the Gaussian functions which are cut off at

the level of the corresponding membership values. The parameters of the Gaussian

function, bi and ci were calculated using the method described earlier with a domain

of (0.0, 1.0), a cardinality of N = 3 and a crossover point of Bc = 0.5

f1(x) = MIN(e
−(x−b1)2

c2
1 , x) (6)

f2(x) = MIN(e
−(x−b2)2

c2
2 , x) (7)

f3(x) = MIN(e
−(x−b3)2

c2
3 , x) (8)

F (x) = MAX

(
MAX

(
f1(x), f2(x)

)
, f3(x)

)
(9)

Now, to obtain the center of mass of the area under the curve, we start with the

generalized formula:

The center of mass R of a system of N particles is defined as an average of their

positions ri, weighted by their masses mi.

R =
1

M

∑
i = 0Nmi · ri (10)

Once that is defined, the center of mass x-coordinate (Rx) is then derived to be for

n = 60 particles is:

Rx =

∑59
i=0 F ( i

20
− 39

40
) · ( i

20
− 39

40
)

∑59
i=0 F ( i

20
− 39

40
)

(11)
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Equation 11 is what is used for all defuzzification in this research and it was opti-

mized into a library routine.

5.4.5 Backpropagation Training Adaptation

In the evolutionary phased of the FNN’s construction, selection was based on how

the defuzzified values matched the values the training set. The fitness function

scored the results by passing the outputs of the network through the defuzzification

process to compare to the crisp training value, rather than a fuzzified representative

of it.

When a crisp value is fuzzified, it produces a fuzzy set with perfect alignment, as

illustrated in Figure 11. Perfect alignment cannot be relied upon from the outputs of

a neural network since the architecture is not bound by such constraints. The center

of mass defuzzification compensated for this fact by still being able to reconstitute

an imperfectly aligned set, as is also illustrated in the figure, into a crisp value.

An example of this is a network providing an output that is 1.0 membership to the

‘small’ category and paradoxically, also a 1.0 membership to the ‘large’ category.

By COM defuzzification, this result can still be made sense of as somewhere in the

middle ground. Alternatively, a moderate value fuzzified into a set would have a

large membership in the ‘medium’ category and very little membership in the ‘small’

and ‘large’ category.
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This required step of defuzzification poses no problem to the selection in the GP

phase of training. This however, does have implications in the backpropagation

training phase. Traditionally, for FNN training, the backpropagation is started at

each of the outputs that each represent a fuzzy membership value. The error term is

calculated from how closely the output (likely having imperfect alignment) matches

the same membership value from a fuzzified crisp training value (having perfect

alignment). This has the downside of reducing the output domain space of the

network. This occurs because the network is only trained towards definite, crisp

answers. Ambiguous answers as described in the previously mentioned example are

trained out of the network, when perhaps they have some validity and their apparent

ambiguity carries meaning.

A way to preserve the complete output space is to train the network towards how well

the set of fuzzy membership outputs defuzzify to match a crisp training value rather

than training to match a value of perfect alignment. For this to occur, a method had

to be invented and applied to the backpropagation algorithm. This method functions

by making adjustments of weights backwards through the network proportional to

first, how much the weight contributed to a wrong answer and second, how wrong

that answer actually was. A good explanatory analogy for this concept is ‘blame.’ If

a node shares some blame for a bad answer, it is adjusted proportional to its blame

in the right direction to make the answer more correct. If these adjustments are
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repeated many times over many points, the weights in the network will converge to a

state which minimizes error in the defuzzified output as in normal backpropagation

training where error is minimized in the individual node’s output.

To factor the error in the defuzzified value into the training process, a blame value

has to be assigned to each membership function node based on how much it con-

tributes to the error of the derived defuzzified value. This process is not as straight-

forward as in normal training where the analog for blame is simply the error in

the output of the node. Here, the set of three node’s outputs have to be taken in

account in order to assign a blame to each node. For purposes of description and

for all applications in this research, only three output nodes are taken into account

at a time for all calculations. That is not to say that this couldn’t be adapted for

defuzzification of larger cardinality fuzzy sets. In that case, this scheme would have

to be mathematically extended to accommodate which is not done in this work.

The first step in this calculation is to decide which direction the node’s output should

be adjusted in order to improve the defuzzification. Starting with the three values

of the outputted fuzzy set, the one corresponding to the node in question is set to

a value of 1.0 and the defuzzification is performed. Another defuzzification is per-

formed with the same node’s value set to 0.0. The errors of the two defuzzifications

are then compared to the training value and the better prediction is determined.

It can be now be decided that the prediction would be improved by adjusting the
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node’s output in the winning direction.

The second step is determining the magnitude of the blame. For convergence of

the network, the adjustments need to be proportional to the amount the nodes are

in error. There are three factors in the calculation of magnitude: the output error,

the improvement factor and the blame factor. The output error is simply the error

between the result defuzzified value and the training value for the data point. The

improvement factor is the error between the defuzzification of the winning adjusted

value set and the training value. The blame factor is a constant which is set at the

beginning of the training that ensures that the adjustments are made in a proper

order of magnitude to allow the network to reach convergence. For the training done

in this research, a blame factor of 10.0 was found to be an acceptable value.

A pseudocode representation of the implementation described above is presented in

Figure 12. This method obtains the blame for a particular output node (belonging

to a three node set that produces a fuzzy set) which is used in the backpropagation

process. defuzzify() evaluates Equation 11 as was described in Section 5.4.4. output

is the resulting three-value vector obtained from the network. correct is the crisp

training value. node no is the node number which we desire the blame for.

Once this blame value has been obtained for the node, the backpropagation proceed

normally using this value as a substitute for what normally would be the error of that

nodes’s output. This method was invented out of necessity for the application of
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begin get_blame

estimate = defuzzify(output[1],output[2],output[3])
output_error = abs_value(correct - estimate) 

if node_no is 1 do
  estimate_zero = defuzzify(0.0, output[2], output[3])
  estimate_one =  defuzzify(1.0, output[2], output[3])
else if node_no is 2 do
  estimate_zero = defuzzify(output[1], 0.0, output[3])
  estimate_one =  defuzzify(output[1], 1.0, output[3])
else if node_no is 3 do
  estimate_zero = defuzzify(output[1], output[2], 0.0)
  estimate_one =  defuzzify(output[1], output[2], 1.0)
end

delta_zero = abs_value(estimate_zero - correct)
delta_one =  abs_value(estimate_one - correct)

if delta_zero is less than delta_one do
direction = -1
improvement_factor = abs_value(estimate_zero - estimate)

else

direction = 1
improvement_factor = abs_value(estimate_one - estimate)

end

blame = direction * blame_factor * output_error * improvement_factor

return blame
end

Figure 12: Pseudocode of Blame Calculation

this particular neuro-fuzzy learning technique in a real-world scenario. Its behavior

perhaps deserves deeper study, which it will not receive in this work. Its validity

can only be argued in this case with real-world performance-based evidence of its

contributions to this problem.
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6 Model Overview

6.1 QL Model Investigation

6.1.1 Purpose

This particular investigation is the central part of this work. It is designed to test

whether a neuro-fuzzy model can be trained to classify the current experienced load

on a machine in terms of the three types of load provided in the SPECweb2005

suite. The Banking, Ecommerce and Support loads of the benchmark are designed

to stress and bottleneck different hardware subsystems. It is easily hypothesized that

the differences from the cross-section of data collected from DTrace as described in

Section 5.3.3 will be adequate to distinguish between the three types of activity.

This hypothesis was proven to be true by a simple preliminary experiment. In this

experiment, samples of DTrace data were trained into a simple multilayer perceptron

model plugin using the Weka3 [33]. This model’s task was to take a datapoint as

input and classify it into one of three discrete classes, one corresponding to each of

Bank, Ecommerce and Support. The perceptron model was able to provide a recall

and precision of greater than 99% which was quite promising for futher exploration

of the data for more complex classification. This is a simple reflection of the fact

that the benchmarks were designed to stress different areas of the system and this

3Available for free under the GPL at http://www.cs.waikato.ac.nz/ml/weka/
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shows up quite recognizably in the monitoring datastream.

This preliminary result is not particular interesting since this task is far from what

an administrator would encounter in a real-life situation. The questions such as

varying degrees of composition and amount of load would be much more difficult

for a human to answer, but a machine learning approach may have a chance. In

the real world, a particular workload is not going to exactly match one of the three

types and the model will have to make a prediction of a value along a continuum.

The purpose of this investigation is to determine if a model can be constructed which

can classify an arbitrary web server load in a three-axis qualitative space defined by

the three types of SPECweb2005 benchmark runs.

One can imagine an autonomic agent as an intelligent entity. One philosophical

measure of computer intelligence is the ability to engage in a conversation with it.

Being able to ask a machine questions and get meaningful answers back from it is a

highly useful ability [20] [3]. First, is could be useful to a system administrator who

is engaged in the task of gathering information in their system. Second, it could

be useful for other computerized systems or autonomic elements since it represents

knowledge in a digital form that can be reasoned and extended upon. The question

that we are developing a model to answer in this case, albeit in a limited capacity, is

“What is your job?” By classifying a machine’s real-time load on these axis provides

knowledge that can be processed into an answer to the question.
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6.1.2 Design

A set of test data needs to be collected to use for training a model. In this specific

experiment, the client load (net SIMULTANIOUS SESSIONS) remains constant for

the period of collection for the model’s training data. This is to isolate out all other

factors in the experiment and focus on the one critical variable that we are interested

in for this particular investigation. The varying parameter is the composition of the

load which the client system is requesting from the server system. The goal is to

prove that meaningful predictions can be made regarding the load composition when

all other parameters remain equal. The problem of dealing with situation where the

client load is outside of the parameters which a model is trained under is addressed

in the confidence monitor investigation in Section 6.3.

Creating a variable makeup of the load presents a problem. This runs against a

assumption that was made when the SPECweb2005 benchmark was designed. The

assumption is that the administrator of this benchmark will be using it to test

the performance of the system and not to provide custom test workloads for an

alternate purpose. Fortunately, an element of the benchmark’s design is able to

be exploited to provide what is needed. Since a separate set of software does not

need to be installed on the server machine for each type of load, the scripts for each

of the three workloads are world-readable for access and execution at all times on

the server. This allows three separate client processes of different types to make
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requests to the same server over the network, each unaware of the existence of the

other two. All requests will be handled by the server. The type of load and amount

of SIMULTANIOUS SESSIONS is configurable at each client and the three sessions

can then be executed at the same time. The server then receives a load that is a

mixture of three different types of traffic which constitutes what is needed to meets

our requirements. This modification is illustrated in Figure 13.

85



SunBlade 
1000

Client

SunBlade 
1000

BeSim

SunBlade 
1000

Server

System

Under Test
Request

Response

Request

Response

SPECweb2005
Client Process Configured

Web Server

with Server 

Scripts

Configured

Web Server

with BeSim 

Scripts

SunBlade 

1000

BeSim

Server

System

Under Test
Requests

Responses

Request
Backend

Backend
Response

Configured

Web Server

with BeSim 

Scripts

SunBlade 

1000

Configured

Web Server

with Server 

Scripts

SunBlade 

1000

SPECweb2005
Banking Client Process

SPECweb2005
Ecommerce Client Process

SPECweb2005
Support Client Process

Client

Normal Benchmark Setup

Modified Benchmark Setup

Figure 13: Normal and Modified Benchmark Setup

86



To complete this investigation, a validation dataset will be collected and run through

the obtained model. This dataset will be composed of datapoints with different

proportions of client activity than the conditions that the network was trained under.

This has the specific design intent of testing the generalized knowledge gained by the

model and will validate ability of the model to perform in a real-time environment.

6.1.3 Visualization

The model being trained will give, as output, the similarity of a load to the three

different extremes. This output point is able to be visualized on special plot called

a ternary diagram. A ternary diagram is the mapping of a three-axis space into

a two-dimensional diagram. It is only applicable when the three-dimensional data

conforms to a special property. If the sum of the three datapoints is constrained to

always equal to 1.0 it is able to be plotted on the ternary diagram, as is the case in

our problem domain. Figure 14 gives an example of a ternary diagram, as it will be

used in this work with a few sample points for illustration.

Activity in the system will be classified against three points of reference which are

defined by the three workloads of the SPECweb2005 benchmark. Visualizing a

plane where these points are three corners of an equilateral triangle, a point which

is within the bounds represents a workload that is characteristically similar to the

three corners of the triangle by how close the point is to one of the triangle’s corners
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in Cartesian distance. A triple of variables a, b and c where the sum is constrained

to equal to 1.0 can be mapped on a ternary diagram. The ternary plot can be

represented in a two dimensional space by applying a transform to the triple of points

down to a two dimensional Cartesian coordinate. The three extremes corresponding

to (1, 0, 0), (0, 1, 0) and (0, 0, 1) map to the equilateral triangle vertexes of (0, 0),

(1, 0) and (1
2
,
√

3
2

) respectively. The intermediate points, generalize by (a, b, c), can

be mapped onto the plot as (b + c
2
, c
√

3
2

). This provides an easily interpretable

visualization of the data upon which understanding can be had and reasoning can

be made upon.

In this work, ternary diagrams are used as a visual aid and also as a descriptive aid.

Concepts can often be more easily described by involving the topology of a ternary

diagram.

Bank Ecommerce

Support

b

a

c

a = 33% Bank, 33% Ecommerce, 33% Support

b = 50% Bank, 50% Ecommerce, 0% Support

c = 80% Bank, 10% Ecommerce, 10% Support

Figure 14: Ternary Diagram Example of Qualitative Classification
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In situations where action may be necessary for configuring and optimizing a system,

the machine needs a sense of the nature of the load that it is experiencing. Space

on this diagram can be partitioned to correspond to a certain behavior or action

for the autonomic agent to consider. Using the developed model in a real-time

environment by an autonomic agent, conclusions can be made upon which area a

real-time datapoint falls in this two-dimensional ternary diagram space.

In addition to the ternary diagram, in this investigation results from the models

will be shown on histograms. This is useful for seeing relative differences between

the results broken down by category and group of results. It is more intuitive for

spotting differences in absolute values of error and standard deviation and is used

to give a more exact analysis.

6.1.4 Training Data Set

Figure 15 illustrates the performance capabilities of the SunBlade 1000 server sys-

tem as measured by the SPECWeb2005 benchmark under normal circumstances.

At every setting of the SIMULTANIOUS SESSIONS variable, three benchmark

runs are done; one for each workload type. For each run, two statistics are dis-

played, TIME GOOD and TIME TOLERABLE. TIME GOOD is the percentage

of requests handled in under 2 seconds and TIME TOLERABLE is the percentage

of requests handled in under 4 seconds. As would be expected, the ability of the
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system to handle requests in a timely manner as the amount of simultaneous clients

goes up is decreased.
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Here, a standard level of client load is needed for the design of the dataset to

eliminate it as a variable. By looking at Figure 15, it can be seen that after 210

SIMULTANIOUS SESSIONS, the performance on the Banking workload starts to

fall off. The same happens for about 230 sessions for the Ecommerce workload and

220 sessions for the Support workload. By design in the SPECweb2005 benchmark,

the load corresponding to a single client session is equal across the three types of

activities to not bias results to favor one hardware configuration over another. These

differences can be attributed to the specifics of the hardware in the tested SunBlade

systems. In an autonomic setting, about 200 sessions would likely be a situation

where a change of configuration would be considered for this set of hardware. In all

cases for this trial the net SIMULTANIOUS SESSIONS will be constant at 200 and

a single session of each of the three types are treated as being exactly equivalent in

terms of load quantity for the purposes of comparison. If future work were to be

done involving different hardware, these assumptions for performance may have to

be re-evaluated and the investigative procedure shifted to match.

Following the decision to keep the client load constant at 200 sessions, a dataset for

training the QL model was collected. Six thousand data points were collected from

SOASE for this investigation, referred to as the QL Train dataset. This dataset’s

design is broken down in Figure 16. Each data point corresponds to a snapshot taken

every second from SOASE’s buffers which aggregated the previous ten seconds of
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data (from the time of the snapshot). Twenty-four different mixtures of Bank,

Ecommerce and Support clients are included in the data, which makes for 250 data

points of each and a total data set size of 6000 data points. These mixtures were

chosen to be well spread out on the ternary diagram as is illustrated in Figure 17.

The breakdown of the client sessions for the benchmark runs are presented in Figure

16 as well as the transformation to Bank, Ecommerce and Support membership

values used for the training process. The group column will be used later for analysis

to mark similar runs (e.g. similar or same proportions of clients) to be compared

to runs belonging to other groups. This format will also be used for other datasets

later in this document.

The dataset was collected by starting the three benchmark clients and waiting until

they reached their statistic collecting period. In this period, the timestamps were

watched carefully and the datapoints corresponding to the 250 point window after

all three clients were running full capacity. This is illustrated in Figure 18.
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6.1.5 Exploration

For addressing the problem of qualitative classification, this research takes the ap-

proach of dividing the output space and focusing on segments of that space with

separate models. This is a ‘divide and conquer’ strategy where the three-value out-

put domain is split up and a separate neuro-fuzzy network is trained to handle each.
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The motive for this choice that the search space during the evolutionary phase for

each of the models will be reduced which will result in a faster converging solution.

A second approach to the training of the QL model was an intimate part of the later

developments of this research. This approach utilized a single unified neuro-fuzzy

model to provide the three necessary outputs. The intention was to compare and

contrast the two approaches and select the superior approach. The findings of this

phase was that a larger network was able to perform adequately when compared to

the divided smaller networks, but required roughly an order of magnitude more CPU

time to train. Even with this much larger training time, the performance could not

quite match or exceed the level that was obtained rather quickly from the divided

approach. Also, no identifiable benefit of the larger network, such as efficiency of

design, could be found in the investigation. The second approach was decided to be

impractical and left out of this document for conciseness.

The specifics of the training process and results and statistics pertaining to its

validation will be examined in greater depth in Section 7.1.
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6.2 QT Model Investigation

6.2.1 Purpose

For the QT model, the goal is to qualitatively differentiate between system activity.

This is a useful for informing an autonomic agent which type of activity is currently

being experienced assuming a known level of client activity. For the agent to make

a decision that results in action, more information is likely needed. In a situation

where the system load is well below the capacity, the autonomic agent has less

motivation to make any adjustments to the system state. If the system is reaching

capacity, the agent will then likely start to consider some sort of action. If the

system is past capacity, then action is almost certainly necessary. Conversely, in a

network environment with multiple hosts, if a system is detected as being not busy

and other systems on the network are saturated, an autonomic agent could take

the knowledge that a system has extra capacity to spare to make an action which

balances the workload.

Returning to the conversational analogy of computer intelligence, assuming we have

addressed the first question posed for the development of the QL model, the most

useful extension that we can make is the followup “How busy are you right now?”

The purpose of this investigation is to determine whether a model can be constructed

which can classify the currently running load on the system on a single axis of system
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activity level independent of the composition of the load.

By building a model to answer this question, in conjunction with a facility to answer

to the question in the QL model investigation, we can obtain a cross-section of

the system state that is quite useful for autonomic decision making. The neuro-

fuzzy approach applies particularly well to this problem since the answer domain

falls into the three categories as described above. A model which provides three

outputs corresponding to the fuzzy values which describe the load as ‘small’, ‘nearly

saturated’ and ‘over saturated’ is quite descriptive and interpretable. For purposes

of evaluation and discussion here, defuzzification is applied on all answers. This

greatly cuts the complexity of the analysis of the validity of the real-world results,

which takes priority in this work.

6.2.2 Design

Since the type and composition of the load is not the subject of study and further-

more the model is expected to function under a variety of loads, there will have to be

a reasonable cross-section of these values developed as a standard of load diversity.

The variable parameter is the client load inflicted on the system.

Another difficulty is the criteria of quantitative comparison. The only reasonable

measure of quantity of load on our system is the SIMULTANIOUS SESSIONS pa-

rameter from the benchmarks. This is the same unit as SPEC defines to be neutral
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and unbiased and is the obvious choice.

The goal of for the trained network will be to take a datapoint as input and be able to

classify the amount of workload the system is experiencing. The network output will

belong to a continuum of values along a pre-defined range of client load activity. To

train in this ability, the spectrum has to be defined and represented in the training

dataset. Again, the dataset will be collected by running three SPECweb2005 client

processes to interact with the server to provide datapoints where the client load is

a known quantity to go into the training dataset.

To complete this investigation, as was the case for the QL investigation, a validation

dataset will be collected and run through the obtained model. This dataset will be

composed of datapoints with different levels of client session activity the conditions

that the network was trained under. This will test and validate the obtained model’s

ability to apply generalized knowledge in a situation which is a simulation of a real-

time environment.

6.2.3 Visualization

For the QL model, ternary diagrams are the natural fit because they perfectly rep-

resented the output space in a way that matched the problem. Here, it is not

as straightforward and the analysis will have to rely, firstly, on histograms. The

histograms are capable of illustrating relative differences between categories being
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scrutinized. Secondly, a confusion matrix is used to illustrate the location of pre-

dictions relative to the scale established by the constituent points. This solution,

while not as graphically interesting and descriptively powerful as a ternary diagram,

is the right choice for the task at hand.

6.2.4 Training Data Set

As was mentioned above, the dataset must be representative of a spectrum of client

load that the model is expected to classify under. This implies that the lower and

upper bound of the spectrum. Using the data of Figure 15 on page 90 to justify, a

good choice for the upper bound of the system activity is 300 sessions. This value

is well past the point where a system administrator would consider overloaded and

a reasonable range of everyday activity would likely be no greater than 250. The

lower bound of the spectrum is chosen to be zero, naturally.

For this part of the research, SOASE was used to collect data at various levels of

client load. 9600 data points compose what will be referred to as the QT Train

dataset. The design is displayed in tabular form in Figures 19 and 20.
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This dataset is designed to isolate the factor that we wish to separate out. In this

case, the factor is the client load. The data is made up of forty-eight different

benchmark runs (each adding 200 data points to the dataset) which is split into

twelve groups, each composed of four runs. Each of these groups is selected to

represent a different amount of client load or SIMULTANIOUS SESSIONS directed

at the server and each of the runs has a different load composition.

To isolate the client load, a problem arises from the nature of the SPECweb2005

benchmark which requires a composition of the client sessions for Banking, Ecom-

merce and Support be decided ahead of time. To truly separate out the targeted

factor, the composition of the load would be randomly variable. This would elim-

inate any sort of assumptions about the load composition trained into the model.

To minimize any such bias that could occur from the load composition, values of

composition were randomly chosen. This was done by randomly generating a pair

of floating-point numbers between 0.0 and 1.0 and plotting it using one value as

an x-coordinate and the other as a y-coordinate. If this point is determined to be

within the bounds of a ternary diagram plotted in the same space, the point is ac-

cepted. This process was repeated until enough points inside the ternary diagram

were generated for the amount of data collection trials. This ensured that there

was no human-influenced bias in the load composition which could be raised as an

objection to the results. The locations of the randomly generated load compositions
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on a ternary diagram is further illustrated in Figure 21.
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Figure 21: Ternary Diagram of QT Train Dataset Random Composition

For each level of client activity, four benchmark runs are used to collect data, each

with a different client session ratio randomly picked as described above. This is short

of optimal. Ideally, a dataset which covers the entire spectrum with many variations

of each at every point on the spectrum, but the great amount of time required to

collect the dataset imposes this restriction. Twelve different levels of client load

was deemed an acceptable amount in the trade-off for effort spent collecting data

versus the quality of model. If the results of the validation are good enough, this

can hopefully be overlooked. A production system implementation would definitely

need to examine and address this shortcoming likely by collecting a much larger

training set.
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6.2.5 Exploration

Much like the QL model, a single approach is considered for building a model to

meet the task at hand. This approach is a single fuzzy neural network which takes

the same input stream as the previously discussed networks. The output of this

network is a single crisp value which indicates the model’s answer to the level of

client activity. Behind this crisp value is the three outputs of the network which are

the fuzzy representation of the client load. Because this prediction model is much

less complex, spending effort on two different approaches is not necessary. Again,

as was the case in the QL investigation, a 10-fold protocol will be used to train ten

different models to provide a basis for generalization. In Section 7.2 the abilities of

the trained model will be explored.

6.3 Confidence Monitor Investigation

6.3.1 Purpose

With the QL model, for purposes of isolating the element of the load composition,

the factor of the quantity of load that the system is currently experiencing was lost.

Training data for the QL model was collected at a client load of 200 SIMULTAN-

IOUS SESSIONS and resource constraints prevented investigation into the problem

using a different load. Under the assumption that a model can be trained that will
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accurately predict the composition of the load at 200 SIMULTANIOUS SESSIONS,

it would be unreasonable to expect that the same model can then operate with the

same accuracy at 100 or 300 sessions because it is outside of the parameters that it

was trained for.

It is conceivable, with more resources, that the procedure for the training of the QL

model could be repeated at multiple levels of SIMULTANIOUS SESSIONS. That

would result in multiple different trained networks, each adept within a certain

range of parameters of the client load. The QT also provides the system with a

sense of what the current activity is, so the knowledge could be utilized to select

the right model out of many to give the most accurate prediction. Unfortunately,

the time and resources are not available for this project. Instead, a indicator will

be constructed which informs the autonomic decision maker on the confidence of

the results from the model which was trained at 200 SIMULTANIOUS SESSIONS

in light of the knowledge of the likely amount of load sessions that the server is

currently experiencing.

The purpose of this investigation is to develop a heuristic which can indicate the con-

fidence of a prediction made by a qualitative classification model based on knowledge

from the quantitative predictive model.
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6.3.2 Design

This investigation, by design, benefits from the work done in the previous two

investigations. By using the trained QL model to perform classification on data

that was collected at different client loads, the aptitude of the model for performing

under those circumstances can be predicted. The results from that evaluation will

be examined and a simple heuristic will be designed to segment off the range of

client load which produces confident results from the range that does not.

This investigation will take a slightly different course than the previous two. The

heuristic will be intelligently designed rather than evolved and trained by a machine

learning process. To inform the process for the design of the heuristic, the behavior

of the models has to be examined in-depth to ensure an effective heuristic is found.

This analysis will be performed by running data through the model and examining

the behavior through visualization and numeric methods.

The format of the heuristic will be of the ‘If-Then’ type. More specifically, “IF

<condition> THEN Confident ELSE Not Confident.” Since the heuristic operates

off of the QT model’s prediction, the condition will be a range of values. If the QT

prediction is inside the range then the conditions are met. If it is outside, they are

not.

This heuristic is the analog of a neuro-fuzzy model in the previous two investigations.

It is a container of obtained knowledge and must then be validated following the
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same format of the previous two investigations by using independent data to test

the aptitude in a real-time setting.

6.3.3 Visualization

In this investigation, the visualization of the data has a special purpose. The vi-

sualization is necessary for informing the design of the heuristic rather than just

illustrating the performance of models.

To design an effective heuristic, an in-depth exploration of the data is necessary.

Using histograms, as was done in the previous investigations, is a simple way of

doing providing this. However, it does not provide enough accuracy to get down to

the necessary detail. Histograms will be used for an initial overview of the data, but

for more in-depth visualization a more sophisticated plot will be used.

The task of designing the heuristic is to determine the upper and lower bound for

the QT prediction for the result to be considered confident. All possible heuristics

will be evaluated and compared. The best tool for this job is a 3D plot. The upper

and lower bound of the heuristic lay on the two horizontal axis. The performance of

the heuristic using those parameters will be plotted on the vertical axis. Visualizing

the resulting surface can then display the most adept set of upper and lower bounds

by the minimas or maximas (depending on the performance measure) of the surface.
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6.3.4 Training Data Set

For this investigation to be performed, a dataset which meets a few requirements

must be obtained. First, the dataset must span many incremental levels of client

activity. Second, the dataset must have several different proportions of load com-

position at each level. Third, to reduce noise in the error plots, the choices of

load composition must be evenly balanced to avoid the case that one group has an

unusual proportion of points that are difficult to classify. An ideal dataset would re-

quire an extremely large amount of collection runs of the SPECweb2005 benchmarks

in order to satisfy these three criteria. Again, this exceeds the resources available

to this project, so a compromise must be made.

Luckily, the QT Train dataset collected for the QT investigation (Figures 19, 20 and

21) does a reasonable job of satisfying these three criteria. The QT Train dataset

was not used in the QL investigation and therefore it is completely independent of

the data used to train the QL model. By design, it covers the spectrum of client

load from very little, to past the capacity of the server system and is intentionally

not biased by the load composition.

It must be noted that for each level of client activity represented in the QT Train

dataset, there are only four random proportions of client load (n = 4). To eliminate

noise in the data, the ideal case would be to have a large number of randomly

selected proportions (n À 4). Unfortunately, this is impractical and it must be
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accepted that there will likely be a visible amount of noise in the results and that

must be taken into consideration for the evaluation.

The design of the heuristic also involves the use of the QT model which, unfor-

tunately, the QT Train dataset cannot be considered totally independent of. This

presents a methodological problem which can be mitigated by careful evaluation of

the dataset. This mitigating step is a result of the fact that the models were trained

in a 10-fold cross-validation manner. For the model of each fold, there is a train-

ing partition which is independent data which did not contribute to the particular

model’s training. When evaluating the QT Train dataset, it must be ensured that

the QT model from the correct fold is used, or else the result cannot be considered

legitimate. There will be more discussion of this problem in Section 7.3.2.2.

6.3.5 Exploration

Unlike the QL and QT investigations, there is no component here in which a neuro-

fuzzy network is trained. Performing this investigation is a matter of taking the

obtained QL model, running the QT Train dataset through and examining the re-

sults to design a heuristic. In Section 7.3, the results which are used for designing

the heuristic, the rationale behind the heuristic and the validation of the heuristic

will be displayed and discussed.
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7 Results and Statistics

7.1 QL Model

7.1.1 Overview

The this approach, as discussed in Section 6.1.5, is that of utilizing three specialized

fuzzy neural networks to segment the classification of the three categories, Banking,

Ecommerce and Support to each model. The same input datastream is used to train

three separate models. Each has the specific responsibility of providing a rating for

the membership of the current system workload to the class corresponding to the

models. These three models work in tandem as illustrated in Figure 22 to classify

each datapoint with the three output values.

7.1.2 Training

Ten sets of networks to make up a model, one for each fold of the training data, were

developed using the parameters displayed in Figure 23. The training process for each

individual network took roughly 12 hours on a single 3.4Ghz Pentium D (Presler)

core. Fortunately, an entire lab of these machines were available to train the required

30 networks. The great amount of time required left very little opportunity for trial

and error to tune the training parameters. The parameters were chosen based on

the results for a single fold of the data and then used to train the 10 folds.
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Figure 22: Structural Diagram of QL Model
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Figure 23: QL Model Training Parameters

7.1.3 Performance

As outlined in Section 5.4.2, for proper scientific scrutiny, all evaluation must be

done on an independent dataset which was not involved in the training phase of
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the model. For each model, the test partition for its particular fold is used. The

combination of the testing partition results from the ten models, which encompass

all 6000 points of the QL Train dataset are presented in this section. While the

testing partitions of the QL Train dataset were used for deciding on the stopping

criteria for the second phase of the backpropagation training, they were not involved

in the training. This could be used as a minor objection to the results presented here.

For this reason, a second evaluation and analysis on the QL Valid dataset, which

is wholly independent both in the time of its collection and in load composition, is

conducted later in Section 7.1.4.1.

Figure 24 presents the overall performance obtained from feeding the models the

datapoints of the test partition of the QL Train dataset. Given the sets of outputs

from the network (b, e and s), the sets of actual quantitative training values for each

point from the dataset (B, E and S) and the amount of points in the dataset (N),

the mean absolute error for each of the three workloads, b, e and s are calculated

as follows:

b =
1

N

N∑

i=1

|bi −Bi|

e =
1

N

N∑

i=1

|ei − Ei|

s =
1

N

N∑

i=1

|si − Si|
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The standard deviations, σb, σe and σs are further calculated as:

σb =

√√√√ 1

N

N∑

i=1

(|bi −Bi| − b)2

σe =

√√√√ 1

N

N∑

i=1

(|ei − Ei| − e)2

σs =

√√√√ 1

N

N∑

i=1

(|si − Si| − s)2
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Figure 24: QL Model/QL Train Dataset Overall Performance
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By comparing the results across the ten folds, the results are very similar. Particular

folds have slightly easier time predicting some categories, but that can be considered

a random variation. The total score averaged is more representative of the model’s

ability. In general, Ecommerce is somewhat more difficult for the model to accurately

classify. The standard deviation is also slightly higher for the Ecommerce class.

These results here will be compared in light of the later results, but it can be taken

away that this represents quite reasonable performance of the model.

Figure 25 plots the same performance of the models broken down by the group of

the datapoints. The reference to the points which make up each group is listed

in Figure 16. A general trend that is immediately apparent when examining the

breakdown is that there is much greater accuracy for points in the center of the

ternary diagram (Groups 1, 2 and 3). Points on the corners and outer extremes

tend to have more inaccuracy. It is observed that this model has a bias to produce

results which tend towards the middle region. The reason for this is likely a useful

adaptation generated in the evolutionary phase. In the QL Train training set, there

is a quite evenly balance proportion of interior points and exterior points, so it

can be concluded that this isn’t a flaw in the design of the dataset. This can be

most easily attributed to the nature of the problem domain where it is beneficial for

the model to default to moderate predictions when faced with ambiguity. Erring

towards the moderate in this manner produces less net error which was selected for
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in the evolutionary process.
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Figure 25: QL Model/QL Train Dataset Mean Absolute Error and Standard

Deviation by Group

The standard deviation also correlates with the mean absolute error, broken down

by group and also by the category. However, there is less spread between the interior

and exterior points. Both measurements appear to be in correlation to the intrinsic

difficulty of the particular group to be classified. One anomaly is observable for the
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standard deviation in Group 6 where the Ecommerce value is not as pronounced

and in line with the other categories. This is a phenomenon which has no obvious

and immediate explanation, since the points of Group 6 lie in the interior of the

ternary diagram. By drilling into the data, it was found that this trend for Group

6 holds across all folds, so its cause is likely an intrinsic characteristic of the data.

Figure 26 is a set of plots of predicted points on multiple ternary diagrams. The

location of the predicted point on the diagram is calculated by taking the three

outputs of the model and normalizing them to sum to 1.0 to meet the criteria for

plotting them on the ternary diagram. The normalization is necessary because the

output will not normally evaluate to sum to exactly one. The reason is the same

as was discussed earlier in Section 5.4.5 with the output rarely having a perfect

alignment. The plots are split up by the group of points in the QL Train dataset

(reference Figures 16 and 17 on pages 93 and 94). Each group is also further divided

and marked by the individual benchmark run. Only a random sampling of available

results are plotted to reduce visual congestion, as the purpose of this visualization

is to identify trends. One thing to note is that Group 5, which is twice the size of

the other groups (having 6 collection points rather than 3), is split into two separate

plots for visual simplicity.
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Figure 26: QL Model/QL Train Dataset Ternary Diagrams by Group
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The greater difficulty in predicting the Ecommerce component of the client load is

extremely apparent in this visualization. The clusters of points are elongated in

the direction which points towards the Ecommerce corner of the diagram. Also,

the points which are composed of primarily Ecommerce have clusters which are

spread much wider. This is in agreement with mean error and standard deviation

is much higher in the Ecommerce category as is displayed in the histograms. Also,

the previously observed bias towards moderate prediction is clearly visible in these

plots. Group 7’s points are almost entirely classified in the territory of Group 6.

Group 6 points are spread around the territory of Group 3 and other groups show

a clear inward bias.

7.1.4 Validation

The best test of the validity of a constructed model for a real-world task is how well

it performs in a different environment from which it has been trained. The attempt

here is to measure the gained intelligence in the model for dealing with data it has

not seen before. To be useful, the model must be able to apply principals picked

up in the training process to intelligently classify input of arbitrary workloads. A

comprehensive evaluation of this ability must include both an objective and subjec-

tive evaluation. A subjective evaluation, while may be considered as inexact and

perhaps unscientific, is included because objective measurement does not give a
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complete picture. The categories of classification (Bank, Ecommerce and Support)

were chosen to be as objective as possible backed up by the benchmark design, but

still, there is a subjective element since the three types are still relatively arbitrary

orientation posts to base all measurements against. The subjective evaluation done

here gives an indication of the aptitude of the method of using SPECweb2005 as

orientation posts when considering an arbitrary workload that is different in nature

from serving web pages.

7.1.4.1 Objective The models were trained to pick up knowledge from the

QL Train dataset (Figure 16 and 17 on pages 93 and 94) so, the first test is the

ability for the models to classify a workload made up of differing proportions of the

SPECweb2005 benchmarks. The QL Valid dataset of 2400 points was collected in

the same way as the QL Train dataset, but the workloads were chosen to be different

in their composition. The design of the QL Valid dataset is shown in tabular form

in Figure 27 and plotted on the ternary diagram in Figure 28. A view of Figure 17

and 28 superimposed would show that the location of the points in the 2D space of

the ternary diagram do not overlap which meets the requirements of independence

among the two datasets. By testing the model’s accuracy on the QL Valid dataset,

we can see how the intelligence of the model holds up in the regions of the ternary

diagram which are not covered by the set that was used to train the model.

120



518 0.0510 180 0.900.0510

50

2

Supp
Clients

5

4

5

0.05

Ecom
Clients

0.35

140

0.254

0.50

2

0.25

0.70

Supp
Fuzz

0.50

2

9

70

50

60 1

17

0.25

0.05

0.05

0.375

0.375

180

1

0.90

75

140

50

0.301

100

75

0.35

2

0.25

0.25

0.50

1

Ecom
Fuzz

0.30

10

100

10

10

12

50

70

0.05

50

4

8

4

0.35

70

13

3

0.375

50

140

180

60

70 0.30

50

50

100 0.25

0.35

3

0.25

10

10

0.05

50

50 75

10

140

7

3

415

60

4

10

10

0.70

50 3

0.35

0.375

0.25

5014

4

0.70

75

Group

0.05

75

0.70

0.25

Run

10

0.70

0.25

0.375

10

140

Bank
Clients

0.25

5

0.05

75

0.25

Bank
Fuzz

0.05

0.25

70

16

0.90

11

6 50

0.375

0.25

0.25

0.70

50

50

0.35

0.05

70

0.05

140

10

Figure 27: Table of QL Valid Dataset Composition
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The set of models obtained in the training process, when fed the QL Valid dataset

gave the results presented in Figures 29, 30 and 31. Again, the calculations for mean

absolute error and standard deviation described in Section 7.1.3 were applied here.

Since there is only a single dataset and no notion of associated testing partitions

associated with the model of each fold, the 2400 points of this dataset is re-used

for each. The QL Valid dataset is run through the model for each fold, to produce

24000 results which are used to generate the figures and plots in this section.

The most striking observation that can be made from a quick examination is that the

results are significantly better than the results with QL Train’s testing partitions.

This can be largely explained by the fact that the QL Valid dataset does not contain

points which are as far from the center as Group 7 from the QL Train dataset which
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provided the most error in that evaluation. Here, the absence of such points reduce

the average error. This centrally-biased trend is also observable here, with Group 5

of the QL Valid dataset being the furthest from the center and having the greatest

mean error and standard deviation.
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Figure 29: QL Model/QL Valid Dataset Overall Performance
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Figure 30: QL Model/QL Valid Dataset Mean Abs. Error and Standard

Deviation by Group

Visible in the ternary plots for this evaluation is the QL Valid dataset being pro-

cessed by the model. Group 4 is spread between two different plots to reduce visual

congestion. Here the results are quite similar with what was witnessed for the

QL Train dataset and there is nothing new to discuss.
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Figure 31: QQL Valid Ternary Diagrams By Group
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7.1.4.2 Subjective For the subjective evaluation component of this investiga-

tion, three workloads were run which are clearly external to the realm of web serving.

The objective of this test is to determine whether the knowledge contained inside

the trained models can be applied to intelligently classify non-webserving workloads.

To accomplish this, three workloads were designed to be subjectively similar to

the three benchmark types. The criteria of on which the model will be evaluated

is how the classification appears to match up with pre-conceived ideas of what

the results should be. As mentioned earlier in this document, this is arguably

unscientific. However, in defense of it, good subjective results can show promise for

more elaborate future work in extension of that which is presented here.

The first workload that is tested is that of a scp operation to transfer portions of

a filesystem over the network to an external machine (labeled ‘File Copy’). This is

designed to be similar in characteristic to the Support workload which primarily is

concerned with accessing a mixture of large and small files off of the hard disk and

sending the data over the network.

The second workload is that of neural network training (labeled ‘Network Train’).

Specifically, this is running instances of the program that was constructed to train

the FNNs for the QL and QT models. This involves maximum of CPU usage and

periods of hard disk access to access the training data. This is modeled to be some-

what similar to the Bank workload in the dependence on CPU usage. Because the
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SunBlade 1000 system is of dual-processor architecture, two simultaneous sessions

of this program were run in order to fully saturate the CPU resource as in the case

of the Banking workload.

The final workload is a custom-written application to provide a subjectively similar

characteristic of the Ecommerce workload (labeled ‘Memory Hog’). This simple

program, written in Java is designed to consume the entirety of the memory resources

of the system. It allocates the majority of the system memory and for each megabyte

of allocated space, it spins off an independent thread to make random reads and

writes to that particular chunk. By keeping the allocated memory active, it forces

the kernel’s paging algorithm to manage the pages that have to be brought in and

sent out of main memory. This has the effect of saturating and stressing the system’s

memory subsystem, as well as keeping a large pool of threads constantly running.

Figure 32 presents the ternary diagrams of the points collected from SOASE during

the workload’s run and run through the QL models. The plot is also broken down

by the models of the ten folds to make it possible to generalize. This is needed

because random differences exist in each individual model and each will likely classify

the subjective workload slightly different than other models with other random

differences. The outputs from the network were also, as was the case for the objective

evaluation, normalized to fit on the diagram.
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Figure 32: QL Model Subjective Evaluation
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As is seen in this visualizations, there are definite indications of the intelligence

contained in the model, though it is far from perfect. All three of the workload’s

classifications are biased towards Support and there is large differences between

predictions of the models. Despite this, the file copy workload is uniformly classified

heavily as Support which counts as a subjective ‘hit’ in this case. The ‘Memory Hog’

workload is classified mainly as Support, but it tends towards Ecommerce for which

it was designed. The ‘Network Train’ workload similarly tends towards the Banking

corner.

In the ‘Network Train’ and ‘Memory Hog’ workload, there is a noticeable level of

disagreement between the models from the ten training folds. This indicates that

there is not a clear principal on which the networks apply to make these classi-

fications. Random structural differences between the models of ten folds lead to

widely different results and the system activity during these new workloads work to

confuse the models as they were not actively selected and trained for this specific

system behavior. This could suggest that a model constructed specially for a dif-

ferent workload domain such as this one could pick up on different cross-sections of

data to refine such predictions and be more successful at that task. This is brought

up again in Section 8.2 as a potential future investigation.

The differences witnessed between the three workloads are the result of the model

picking up on characteristics of the datastream which have distinct differences. In
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this case, it would be unreasonable to expect results that fit exactly with the hy-

pothesis since there are clearly flaws in the design of these workloads. They are

clearly not directly similar to the three workloads that they are modeled after and

they should be classified differently. One plausible explanation for the accuracy of

the ‘File Copy’ workload and the inaccuracy of the other two is the network activity.

Network activity is an essential part of web serving and it is no doubt that the mod-

els use the monitoring of the network as a large component of the prediction. The

scattered results for ‘Memory Hog’ and the ‘Network Train’ workloads are likely due

to them not generating any sort of network traffic to provide a basis for prediction.

When evaluating this data, one also has to take into account the possibility that

these results appear to fit based on chance and the decisions that went into the

classification are not inherently intelligent. This is representative of the method-

ological flaws of subjective testing and further objective study is the only way to

address the questions raised. As a result, the results obtained in this section should

be considered very tentative in light of further study.

7.2 QT Model

7.2.1 Overview

As discussed in Section 6.2, this investigation is to test the feasibility of construct-

ing a model which can output, in real time, a prediction of the quantity of load
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the system is experiencing in terms of client sessions. The model performing the

prediction is a FNN which takes the DTrace-derived data from SOASE as input

and produces a three fuzzy-number set which defuzzifies to an output. This model

shares the same structure as a single one of the three models from the QL model.

In terms of complexity, this model’s task is simpler than the qualitative prediction,

having only a single crisp output parameter as opposed to three. For this reason,

the single FNN is expected to be perfectly adequate for the task that it is applied

to. Again, the 10-fold cross-validation procedure is used, which produces ten such

models for evaluation.

Quantitative (QT) 

Prediction Model

Data Quantity

Single 
Neuro-Fuzzy
Network

Figure 33: Structural Diagram of QT Model
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7.2.2 Training

The parameters used for the training are displayed in Figure 34. Each of the 10

model’s training took approximately 18 hours to run on a 3.4Ghz Pentium D core

(Presler). As was done for training the QL models, the GP phase was stopped

well before the model converged to its best solution. The backpropagation phase

was utilized to bring the model to its final convergence. Initially, 3500 iterations of

the backpropagation training were applied. It was observed that overtraining was

occurring. By reducing the number of iterations back to 2850, the testing partition’s

evaluation was improved in 8 of the 10 folds.

Child Node
Limit

20

Main Node
Limit

100.1

Mutation
Probability

0.65

Crossover
Probability

300

Population

900

Generations

0.001

Iteration
Learning
Rate

2850

GP Phase Parameters:

Backpropagation Training Phase Parameters:

Figure 34: QL Model Training Parameters
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7.2.3 Performance

Following the same pattern as QL model, the first analysis of performance is per-

formed on the testing partition of the QT Train dataset. It must be noted that the

results presented here are in terms of a range of values between0.0 and 1.0 with

0.0 corresponding to 0 clients and 1.0 corresponding to 300 clients. As an example

of the conversion, 0.0657 is equal to approximately 20 simultaneous client sessions

(0.0657 ∗ 300).

Figure 35 shows the overall mean absolute error and standard deviation. These

values are calculated in a very similar way as was done for the evaluation of the

QL model. Mean absolute error (x) of the prediction given the set of quantitative

predictions (x), the set of actual quantitative values (X) and the amount of points

in the set (N) is calculated as:

x =
1

N

N∑

i=1

|xi −Xi| (12)

The standard deviation (σx) is calculated as:

σx =

√√√√ 1

N

N∑

i=1

(|xi −Xi| − x)2 (13)

The results of the evaluation on the testing partition are presented in Figures 35,

36 and 36. As can be seen in the group-by-group breakdown (Figure 36), the mean

absolute error is greatly hurt by Group 12 which is made up of datapoints from
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runs of 300 simultaneous client sessions. The extreme inaccuracy of this group

drags down the average. The cause is likely the fact that the system is well past the

point of client load saturation and system activity can no longer scale to provide a

cross-section which is meaningful to the model. This indicates that in the system

activity, there is very little that can be used to differentiate during higher client

loads. The model has adapted to show bias by classifying these more ambiguous

data points belonging to Group 12 as in the territory of slightly lower client activity.
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Figure 35: QT Model/QT Train Dataset Overall Performance

As the client loads ramp up through Groups 2 to 8, the error ramps up. This cor-
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Figure 36: QT Model/QT Train Dataset Mean Abs. Error and Standard

Deviation By Group

responds to a client load between 25 and 200, which is below the saturation point.

From this, it seems that the characteristics which are used to make distinctions

becomes more ambiguous as the activity increases. Once the system reaches the

saturation point, it can be seen that the mean error becomes reduced. The hypoth-

esized cause is that once the system crosses the saturation point, other factors of the

system like memory swapping to disk come into play, giving the model additional

traction for classification. In Figure 15 on page 90, the performance of the bench-

mark systems was observed to start dropping off past 200 sessions, which supports

this conjecture.

The confusion matrix for the performance on the QT Train dataset is in Figure

37. Hits for a particular group to populate the matrix were determined by looking
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at the closest group (in absolute difference) to the predicted quantity. As can be

seen the model is quite adept at determining the system load and can make definite

distinctions between different quantities of client load. All are relatively near the

correct value, so there is large amount of confidence in the predictions made by this

model. This is a reflection of the relatively low standard deviation seen in Figures

35 and 36.
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Figure 37: QT Model/QT Train Dataset Confusion Matrix by Group
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As was hypothesized earlier, it is illustrated in the matrix that the model is unable

to differentiate between various large quantities of client load. Groups 8 through 11

have a disproportionally high amount of hits from points that are actually belonging

to Group 12. The model seems to be having trouble with Group 12 and it finds the

points to be similar to those of lower client load. Discussion of precision and recall

is not entirely relevant to the evaluation of the model, since inaccurate prediction

that are still close are still very useful for an autonomic agent.

7.2.4 Validation

For objective measurement of the quality of the developed model, the same approach

was taken as for the QL model. A completely independent dataset was collected

which differs in its choice for load. This dataset, named the QT Valid dataset, is

outlined in tabular form in Figures 38 and 39. It is composed of 200 data points from

each of forty-eight benchmark runs which makes for a total of 9600 points. This

dataset was designed to have client load levels that are in the gaps of the QT Train

dataset. The composition of the load was chosen to be random as was the case for

the QT Train dataset. Again, the random selection of composition is illustrated in

Figure 40.
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Figure 38: Table of QT Valid Dataset Composition - Part 1
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Figure 39: Table of QT Valid Dataset Composition - Part 2
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As was the case in the validation of the QL model using the QL Valid dataset, for

the validation of the ten models (of the ten folds), the QT Valid dataset is run

through each. This makes for 96000 datapoints to be used for the result set which

generated the figures and statistics here displayed in Figures 41 and 42. The results

here are very similar and are quite supportive of the results in the previous section.

This is a very strong indication of the strength of the prediction capability of the

trained network. Since the result set is 10 times the size of the QT Train validation,

the level of noise, particularly in Figure 42 is reduced and much smoother trends

are visible.

The general trend of an increasing error through the middle region is confirmed

here. The trend of lower error in the region above 200 sessions is also present as
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Figure 41: QT Model/QT Valid Dataset Overall Performance

was witnessed from the QT Train evaluation and the same increase in error once

the system becomes completely oversaturated is is also present.

When comparing this confusion matrix (Figure 43) to the matrix for the QT Train

validation partition (Figure 37 on page 137), the characteristics are nearly identical.

It can be concluded that the model was able to absorb generalized knowledge from

the QT Train dataset. This is a particularly good result since the composition of

the load across the three benchmark types were both randomly composed and this

demonstrates the lack of dependence on factors of load composition (qualitative
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factors) when making a quantitative prediction.
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Figure 43: QT Model/QT Valid Dataset Confusion Matrix by Group
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7.3 Confidence Monitor

7.3.1 Overview

We have already shown for the QL model that a reasonable standard of performance

is available at 200 SIMULTANIOUS SESSIONS. The confidence monitor investiga-

tion is to determine the range over which a reasonably level of performance can still

be expected. The definition of ‘reasonable’ itself is rather vague. To address this,

several different standards of what is desired from the heuristic will be developed

and compared.

As was discussed earlier, this heuristic will be intelligently designed. The first task

in this section is to inform the design process. The data displayed here are generated

by running the QT Train dataset (collected for the QT investigation) through the

QL model and later, both the QL and QT model. By examining the data, the

heuristic will be designed to meet several different criteria. Finally, these results

will be validated by independent data and compared.

7.3.2 QL Model Performance when Varying Client Session Level

7.3.2.1 Initial Data Overview Figure 44 presents the mean absolute error

and standard deviation of the prediction of the QL model when evaluated with the

QT Train dataset. The entire QT Train dataset is used for the ten models trained
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for each fold, which makes the result set 96000 points large. In Section 6.3 it was

disclaimed that due to a shortcoming of the QT Train dataset, there would be a

certain level of noise in the dataset. The existence of such noise is detectable by

looking at these histograms, but it must be overlooked due to the barrier of necessary

time and effort not being available to address this problem.
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The client load level of 200 SIMULTANIOUS SESSIONS is represented on the his-

togram as Group 8. Group 8’s values match quite well with the results in the QL

model’s evaluation in Figure 24 on page 114, as one would expect. Keeping in mind

the noise that is present in this data, it can be clearly seen that the error and stan-

dard deviation remains roughly constant in Groups 6 through 11. The predictions

then become quite unstable at the upper and lower bounds of that range. This

range corresponds to 150 to 275 SIMULTANIOUS SESSIONS. This implies that

the QL model trained at 200 sessions produces reasonable results over a range of

125 sessions. This is a much greater range that was initially expected, an this is a

quite pleasing result.

It is tempting to declare the heuristic as IF <QT prediction is between 150 and 275

sessions> THEN <QL prediction> is ‘Confident’ ELSE <QL prediction> is ‘Not

Confident’. This would be the most simple and straightforward approach, but it

discounts a large amount of uncertainty in the system. First, the boundary between

groups are 25 sessions large and finer refinement may be needed. Second, the known

client activity level in a real-time environment also depends on the QT model which

is also prone to uncertainty. It is clear that a more thorough approach is needed.

This investigation will proceed by evaluating all combinations of upper and lower

bounds of the heuristic to discover which range is superior.
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7.3.2.2 Design of Heuristic Comparison Method All combinations of up-

per and lower bounds need to be tested using the QT model’s prediction. The

performance of the QL model must be compared between predictions that fall in-

side the heuristic’s range and those which do not. For each set of bounds, the ability

for the heuristic to separate the datapoints into groups which are ‘Confident’ and

‘Not Confident’ is evaluated. To determine which is the ‘best’ heuristic, criteria for

comparison need to be defined and the method to obtaining the criteria data must

be developed.

To used the QT Train dataset to develop this heuristic, each datapoint needs to

be evaluated by both models in the manner which was illustrated in Figure 6 on

page 40. Since we have models for each of the 10-training folds for both the QL

and QT parts, the QT Train dataset will be run through all ten QL models to

make a result set of 96000 points. A corresponding result set is also developed by

running the dataset through the QT models. As was mentioned in Section 6.3.4 the

QT Train was involved in the training of the QT model and this poses a problem

to this investigation. To address this, it must be ensured that the QT prediction

for each point is made by the model for which the point belongs to the testing

partition. The QT Valid dataset is a possible alternative, however, it is reserved for

the validation of the heuristic in Section 7.3.4. Ideally, a new dataset similar to the

QT Train dataset would be collected for this purpose (which would take a significant
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amount of time). For practical purposes, this is not necessary. The comparison of

the validation of the QT Train and QT Valid datasets indicates that the results

from a newly-collected dataset would be quite similar to those obtained from the

evaluation which proves that this is a very minor issue.

Once the QL predictions (b, e and s) and corresponding QT predictions (x) have

been made (all sets of size N), all combinations of the bounds of the heuristic Hj,k

must be applied to each pair of QL and QT predictions.

Since the QL model was trained at 200 sessions, the cases of lower bound that are

tested are 1 through 200 (1 ≤ j ≤ 200) and similarly, the cases of upper bound that

are tested are 201 through 300 (201 ≤ k ≤ 300) to satisfy all possibilities.4

For each possible heuristic Hj,k(), it is applied to the QT predictions. The result

sorts the set of corresponding points of QL predictions into two sets, one where

the heuristic evaluates ‘Confident’ (b, e and s of size N c) and the other where it

evaluates ‘Not Confident’ (b′, e′ and s′ of size N ′). Along with the correct training

values (B, E, S, B′, E ′ and S ′) for the dataset, this provides a basis for calculating

measures of a heuristic’s aptitude.

Four criteria will be defined for evaluating each heuristic:

4In practicality, the results from evaluating a lower bound of 40 or less are ignored. This

is because very few points actually evaluated lower in the QT predictions and further, they

are obviously a bad choice for a lower bound which can be seen from examining Figure 44.
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1. Base Mean Abs. Error (∆b) – This is the mean absolute error of the points

which evaluate ‘Confident.’ Values which are lower constitute a ’better’ heuris-

tic. A separate measure for each of Bank, Ecommerce and Support categories

(∆b
b, ∆b

e and ∆b
s) are calculated as:

∆b
b =

1

N c

Nc∑

i=1

|bi −Bi| (14)

∆b
e =

1

N c

Nc∑

i=1

|ei − Ei| (15)

∆b
s =

1

N c

Nc∑

i=1

|si − Si| (16)

2. Mean Abs. Error Gain (∆g) – This is the improvement in mean absolute error

of those which evaluate ‘Confident’ over those which evaluate ‘Not Confident.’

Values which are higher constitute a ‘better’ heuristic. A separate measure

for each of Bank, Ecommerce and Support categories (∆g
b , ∆g

e and ∆g
s) are

calculated as:

∆g
b =

1

N ′

N ′∑

i=1

|b′i −B′
i| −

1

N c

Nc∑

i=1

|bi −Bi| (17)

∆g
e =

1

N ′

N ′∑

i=1

|e′i − E ′
i| −

1

N c

Nc∑

i=1

|ei − Ei| (18)

∆g
s =

1

N ′

N ′∑

i=1

|s′i − S ′i| −
1

N c

Nc∑

i=1

|si − Si| (19)

3. Base Standard Deviation (Θb) – This is the standard deviation of the points

which evaluate ‘Confident.’ Values which are lower constitute a ‘better’ heuris-

tic. A separate measure for each of Bank, Ecommerce and Support categories
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(Θb
b, Θb

e and Θb
s) are calculated as:

Θb
b =

√√√√ 1

N c

Nc∑

i=1

(|bi −Bi| − b)2 (20)

Θb
e =

√√√√ 1

N c

Nc∑

i=1

(|ei − Ei| − e)2 (21)

Θb
s =

√√√√ 1

N c

Nc∑

i=1

(|si − Si| − s)2 (22)

Where

b =
1

N c

Nc∑

i=1

|bi −Bi| (23)

e =
1

N c

Nc∑

i=1

|ei − Ei| (24)

s =
1

N c

Nc∑

i=1

|si − Si| (25)

4. Standard Deviation Gain Θg – This is the improvement of standard devia-

tion of the error in the points between the points which evaluate ‘Confident’

vs. those which evaluate ‘Not Confident.’ Values which are higher constitute

a ‘better’ heuristic. A separate measure for each of Bank, Ecommerce and

Support categories (Θg
b , Θg

e and Θg
s) are calculated as:

Θb
b =

√√√√ 1

N ′

N ′∑

i=1

(|b′i −Bi| − b′)2 −
√√√√ 1

N c

Nc∑

i=1

(|bi −Bi| − b)2 (26)

Θb
e =

√√√√ 1

N ′

N ′∑

i=1

(|e′i − Ei| − e′)2 −
√√√√ 1

N c

Nc∑

i=1

(|ei − Ei| − e)2 (27)

Θb
s =

√√√√ 1

N ′

N ′∑

i=1

(|s′i − Si| − s′)2 −
√√√√ 1

N c

Nc∑

i=1

(|si − Si| − s)2 (28)
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Where b, e and s are as above and

b′ =
1

N ′

N ′∑

i=1

|b′i −B′
i| (29)

e′ =
1

N ′

N ′∑

i=1

|e′i − E ′
i| (30)

s′ =
1

N ′

N ′∑

i=1

|s′i − S ′i| (31)

This is not an all-inclusive set of criteria one could use to evaluate the heuristic.

For simplicity of discussion here, the evaluation is limited to these criteria. Future

work may be interested in improving some element of this process and may better

address this issue based on what criteria is desired at the time.

The values of these criteria were calculated for each combination of lower and upper

bound on the heuristic and the results are plotted in Figures 45 and 46 in the next

section.

7.3.3 Design of Heuristic

Figures 45 and 46 illustrate the evaluation of the heuristic by the criteria defined in

the previous section.
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Figure 45: Plot of Base and Gain Mean Abs. Error for all Heuristics by

Category
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Figure 46: Plot of Base and Gain Std. Deviation for all Heuristics by Cate-

gory
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In the case of the base mean and standard deviation plots, the minima represents

the optimal heuristic for that criteria. For the gain plots, the maxima represents

the optimal heuristic. To make a good choice of heuristic, all criteria need to be

balance in the decision. As can be seen in the base value plots in Figures 45 and

46, the minimas and maximas do not correspond to the same choice of heuristic. A

compromise has to be reached between the criteria to find the best overall choice.

Here, three strategies of the design will be taken to develop three heuristics which

will then be carried on to validation. These are representative of what could be

interpreted from the rather ambiguous term ‘Confident.’ The motivation of the

strategies are:

• Strategy 1 – Minimize Base Mean Absolute Error and Standard Deviation

• Strategy 2 – Maximize Mean Absolute Error and Standard Deviation Gain

• Strategy 3 – A Compromise Between Minimizing Base Values and Maximizing

Gain Values

These strategies will be executed by determining a function for the ‘fitness’ of each

heuristic, plotting the fitness to discover the maxima and taking the corresponding

heuristic as the ‘best.’ The function chosen for each is just one arbitrary choice

of many that could be used to fulfill the objective. The choices here were deemed

adequate to fill the current need, but future work could include a more sophisticated

selection process to fit a perhaps different need.
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For Strategy 1, the fitness (F1) is calculated as:

F1 =
1

∆b
b + ∆b

e + ∆b
s

+
1

Θb
b + Θb

e + Θb
s

(32)

For Strategy 2, the fitness (F2) is calculated as:

F2 = ∆g
b + ∆g

e + ∆g
s + Θg

b + Θg
e + Θg

s (33)

For Strategy 3, the fitness (F3) is calculated as:

F3 =
∆g

b + ∆g
e + ∆g

s

∆b
b + ∆b

e + ∆b
s

+
Θg

b + Θg
e + Θg

s

Θb
b + Θb

e + Θb
s

(34)

The fitness of the heuristics by the three strategies are plotted in Figure 47.
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Figure 47: Heuristic Fitness by Strategy
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As is illustrated in the plot, the heuristic for the maxima for Strategy 1 is IF <QT

prediction is between 195 sessions and 238 sessions> THEN <QL prediction> is

‘Confident’ ELSE <QL prediction> is ‘Not Confident’

The heuristic for the maxima for Strategy 2 is IF <QT prediction is between 91

sessions and 291 sessions> THEN <QL prediction> is ‘Confident’ ELSE <QL

prediction> is ‘Not Confident’

The heuristic for the maxima for Strategy 3 is IF <QT prediction is between 108

sessions and 291 sessions> THEN <QL prediction> is ‘Confident’ ELSE <QL

prediction> is ‘Not Confident’

The associated base and gain values of the three heuristics are displayed in tabular

form in Figure 48. They will also be validated using independent data in the next

section.
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Figure 48: Confidence Monitor Heuristics’ Performance on QT Train Dataset
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7.3.4 Validation

Since the above heuristics were ‘trained’ using the QT Train dataset. It follows that

the validation should be performed with an independent dataset. Conveniently, the

QT Valid dataset fits the requirement, as it was designed for this purpose in the QT

model’s validation and it will be re-used here. The independence of this set from

the training sets which trained the QL and QT models make this a fair simulation

of a real-world situation. The heuristics are tested by putting each datapoint from

the dataset through both models from the earlier two investigations, applying the

heuristics and breaking down the error by the result of the heuristic (as was done in

the above section). One would expect, if the heuristic is working, the values to be

similar to those in Figure 48. Figure 49 presents obtained results from the QT Valid

dataset.

It can be seen in the figure that the strategies that went into the heuristics hold in

the validation. Strategy 1 does indeed have the least base mean absolute error and

standard deviation, Strategy 2 does indeed have the most gain and Strategy 3 is a

compromise. This can be considered a successful result.

One thing that is immediately apparent is the drastically different base levels than in

the previous evaluation in Figure 48. The ‘Confident’ base mean absolute error value

in the Bank category is significantly higher than was witnessed in the evaluation

of the QL model and the relative levels of error between the three categories are
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Figure 49: Confidence Monitor Heuristics’ Performance on QT Valid Dataset

of different proportions as well. This can be explained by the random noise of a

relatively small sample size of datapoints in the QT Valid dataset. By looking at

the random distribution of the load composition in Figure 40 on page 141, it can be

seen that there are more points near the extreme of the Bank corner of the diagram

and less near the Support corner. As was known from earlier evaluations, those

points tend to have higher error and influence the average score. The Ecommerce

corner is more evenly balanced and as a result, its base mean average error in the

‘Confident’ category is roughly in line with what was seen in the QL model.

Comparison with Figure 44 on page 146, is a good corroboration of the values seen
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in Figure 49. In that figure, the Support category varies wildly whereas, the Bank

and Ecommerce categories change more smoothly from the ‘Confident’ region to the

’Not Confident’ region.

The three heuristics that were developed were chosen using arbitrary criteria. They

entirely depended on the working definition of ‘Confident.’ Further, the fitness

functions that were chosen also may be considered less than optimal. The results

show a noticeable bias towards the Support category because the gains were large

and the function did not compensate towards the other categories. In an extension

of this work, the criteria and fitness functions could be adjusted to meet another

perception of what is desired from the heuristic. These possible perceived deficiencies

will not be addressed here since this section. In its present form, this investigation

has accomplished its goal of showing the process of designing an effective heuristic

and presenting a prototype of an effective confidence monitor in a real-time setting

which matches a desired design goal.
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8 Conclusions and Future Work

8.1 Conclusions

This thesis presents a new architectural approach for the construction of some base-

level autonomic elements. The monitoring framework SOASE, a sentinel element,

was architected and implemented to instrument the internal operation of the web-

server system. An intelligence layer consisting of neuro-fuzzy networks (which com-

prise an aggregator element) was created to process the obtained data into qualita-

tive and quantitative information regarding the real-time operation of the system.

The knowledge learned by the neuro-fuzzy models in the intelligence layer was tested

on new independent data to examine how the performance holds up in a real-world

situation objectively and also subjectively in the case of the qualitative model. Fur-

ther, a simple heuristic approach was tested for determining the range of input

parameters in which the qualitative prediction would be confident.

To complete a system that one could consider fully autonomic, one would need to

extend the system to make responses to the real-time QL and QT outputs. Expert

knowledge would need to be applied to the qualitative and quantitative values to

make some modification to the system in a way to satisfy some self-configuring or

self-optimizing quality. This would likely be an adjustment of the tunable parame-

ters in the operating system or webserver software to better match the experienced
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workload, or else as is illustrated in Figure 5, it could also potentially include adjust-

ment of a much larger system of many servers. The expert knowledge would need

to be developed from a familiarity of how the modification of parameters will affect

the throughput of the single webserver or larger system which could be developed

by experimentation and/or informed knowledge.

This constructed prototype serves as a proof-of-concept of qualities for the engineer-

ing of future systems to exhibit to be useful towards the aforementioned completed

autonomic system. The task of this prototype is to provide the required knowledge

for the basis of an informed decision. It addresses a traditionally difficult step in the

autonomic loop by bridging the gap between highly granular low-level monitoring

and higher level concepts which can be easily reasoned upon. It has bestowed on

the server system a limited sense of ‘self-awareness’ to know what it’s own workload

is without human intervention. For that, in the opinion of the author, this research

has been successful.

The direct contributions of this thesis can be summarized as:

• The Experimental Setup – This research defined the parameters for its own

investigations. It started with the idea of finding an application of Solaris

DTrace in the field of Autonomic Computing. To accomplish this goal, the

SPECweb2005 benchmark was chosen to represent a basis of system activity

and the overall operating domain. The combination of these elements in this
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setting is the most unique contribution of this thesis and promise for future

investigations has been established.

• SOASE – As a means to accomplish the goals established at the outset, SOASE

was architected and constructed. An effective basic set of DTrace probes for

instrumenting a system in real time was established. Furthermore, the archi-

tecture was left open to act as a baseline for future scrutiny and refinement of

the work done here.

• QL and QT Model Prototypes – The neuro-fuzzy techniques chosen to con-

stitute the intelligence layer of this system have been demonstrated as being

effective for the task. The validation on independent data, which was a near-

perfect simulation of a real-time environment, showed the neuro-fuzzy networks

to contain generalized knowledge which could be applied effectively to this

problem.

At the conclusion of analysis, it was found that the constructed system performed to

a quite reasonable standard which exceeded the initial expectations. While the per-

formance results were good, there is certainly room for improvement in the accuracy.

Also, given this initial positive result, this system shows promise to be adapted to

a slightly different or improved application in which it may be even more effective.

These issues will be discussed in the following final section.
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8.2 Future Work

Several areas of possible future research are presented below:

• SOASE Daemons DTrace Utilization – As was mentioned in the discussion of

the design of SOASE, the developed daemons only cover a small subset of the

data available from DTrace. Examination of a larger set of data could give the

aggregator elements more ability to distinguish characteristic in the system

behavior. The probes that were chosen were chosen because they were quite

likely to exhibit differences for the web serving task that the system would be

undergoing. Further refinement in the objectives of future investigation could

utilize DTrace probes which are more targeted to the specifics of those task.

Due to the complexity and openness of the Solaris kernel, there is no shortage

of potential in this area.

• Intelligence Layers inside SOASE – Many probes defined by DTrace have a

tendency to be very verbose as the system executes. This leads to an overload

of data available for processing. A method of aggregation could be developed to

leverage these probes effectively. DTrace has facilities for aggregation of fired

probes, but an opportunity exists for a different machine learning approach

to be effective. The techniques of Sequential Pattern Mining [1] may have

something to offer by exploiting the very deterministic and sequential nature of

the kernel execution through different paths. Also, a soft computing approach
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could discover ways to exploit a verbose datastream in such a way to collect

the data more effectively and efficiently. This approach would introduce an

intelligence layer in the into the sentinel element. This layer compounded with

the intelligence layer adds a great deal of uncertainty and complexity which

would require a great amount of examination to address which is why it was

left out of the scope of this project.

• Creation of Autonomic Policies and Actions – To extend this work into a com-

plete autonomic system, a few things must be developed. First, expert knowl-

edge (autonomic policies) must be developed to give the system a sense of

which actions can improve the system given a knowledge of an existing con-

dition detected by the sentinel and aggregator elements. The development

of this knowledge has been explored to some extent by Thereska [29] by de-

signing facilities to address resource-specific “What if?” questions to assist

system administrators optimization. This knowledge could be leveraged in the

construction of autonomic policies.

Second, autonomic apparatus must be implemented to make the necessary

adjustments to carry out the recommendations of the policies. Finally, a control

system (likely in the form of a registry element) must be developed to ensure

that changes which are carried out that affect the sentinel and aggregator

elements are compensated for given the knowledge that the parameters in the
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underlying system have changed. These are difficult tasks that require the

lower-level apparatus as developed in this work are already in place. However,

to build a fully-realized autonomic system, this type of work is necessary.

• Examining a Different Problem Domain – The subset of the web serving envi-

ronment was explored in this work. Some examination of the system’s behav-

ior in a separate domain was examined in the subjective evaluation of the QL

model. It is suspected that for a different range of tasks the system could be

performing, the best results will come from constructing new elements tuned

towards that task. Orientation points for comparison could be chosen to be

more relevant to the task than the three SPECweb2005 workloads. These

could perhaps be other benchmarks or other representations of ‘extreme’ types

of system activity.

• Improved Training Dataset – The SPECweb2005 benchmark imposed restric-

tions on the quality of data which could be used in the model training process.

With more time available for data collection, this could have been alleviated.

In the absence of such practical limits, a better dataset could have been col-

lected and trained into the neuro-fuzzy network. This would produce models

which are more accurate and more suitable for deployment in a production

environment.

• Interpretation of Obtained Models to Refine the Training Process – One benefit
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of the utilization of Fuzzy Neural Networks is the interpretability property of

the obtained model. A step which was not taken in this work is the white-box

examination of the obtained networks. By looking at the criteria which goes

into the output of the network, insight could be obtained for improvements

in the data collection in the sentinel elements. There is a large potential for

improvement in the accuracy and efficiency of the developed system if this

study is conducted.

• Exploration of Other Machine Learning Techniques – A choice to use a differ-

ent, perhaps non-connectionist, technique for developing the intelligence layer.

The neuro-fuzzy technique had a set of benefits in this work, but another could

be just as and perhaps more, effective at the task. A set of directly engineered

heuristics could be more direct and intuitive as a method or perhaps a deci-

sion tree or other model obtained through data-mining algorithms could seek

the important patterns. Exploring these possibilities and how they could be

used in the construction of other autonomic apparatus would be a worthwhile

examination to conduct.
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